

Global Environmental Issues and the Role of IAEA

20 March 2024

Bumsoo Han, Radiation Chemist Division of Physical and Chemical Sciences Department of Nuclear Sciences and Applications International Atomic Energy Agency (IAEA)

Polluted Environmental behind Development

Radiation Technology for Pollution Control

Flue Gas Treatment with Electron Beam

Industrial Plant in Pomorzany, Poland

Flue gas **Purification**

EB Flue Gas Treatment Plant Installations

Flue gas **Purification**

Place	Flow rate (Nm ³ /hr)	Power (MW)	Accelerator	Dose (kGy)	SO ₂ /NOx (ppm)
Indianapolis,USA(1984)	24,000	-	800keVX2,160kW	30	1,000/400
Badenwerk,Germany(1985)	20,000	-	300keV,180kW	-	500/500
Kawęczyn, Poland (1992)	20,000	-	700keV, 50kW	18.8	600/250
Nagoya, Japan (1992)	12,000	-	800 keVX3, 108kW	10.5	1,000/300
Chengdu, China (1997)	300,000	90	800keVX2,400mA1900kW	3	1,800/400
Pomorzany, Poland (1999)	270,000	112	800keVX4,375mA, 1200kW	10	385/340
Nisi-Nagoya,Japan(1998)	620,000	220	800 keVX6, 500mA, 2400kW	6.7	-
Hangzhou, China (2002)	305,400	-	800keVX2,400mA1896kW	3	1,800/400
Beijing, China (2005)	640,000	150	1000keVX2, 500mA, 1000keV/300mA, 2850kW	-	1,900/400
Svishtov, Bulgaria (2008)	600,000	120	0.9MeV/400mAx4, 1400kW	4	1680/780

Sludge Hygienization with Ionizing Radiation

Sludge Hygienization

•OH,H•, e_{aq}^{-} , + DNA of microorganism \rightarrow Damage in DNA (no duplication)

Sludge Hygienization with Ionizing Radiation

Sludge Hygienization

Sludge Hygienization Plant in Geiselbullach, Germany

Sludge Hygienization

Facilities	Irradiation Source	Irradiated material	Operation condition	Remarks
Geiselbullach, Germany (1973-1984)	Gamma-ray (Co-60, Cs-137) 0.57Mci	Liquid Sewage sludge, 145m ³ /day	2-3kGy	Commercial plant

Sludge Hygienization in Ahmedabad, India

1st facility of 100 tons/day capacity is operational since March,2019, second under construction <u>Cost of the project</u> \$ <u>5.0 Millions</u> <u>Project time 2.5 Years</u>

Converts waste sludge to Manure
 Protects health and environment
 Provides organic Carbon to soil
 Saves subsidy on Urea

Wastewater Treatment with Ionizing Radiation

Main purpose of wastewater treatment

- -. Removal of harmful impurities (COD, BOD, S/S etc.)
- -. Removal of color, odor etc.
- -. Removal of T-N, T-P

Radiation Technology

- -. Disinfection of microorganisms (Pathogenic organisms etc.)
- -. Destruction of residual chemicals, such as POPs, endocrine disrupters, Pesticides, and Pharmaceutical residues.
- -. to discharge to river, or to re-use in industries or irrigation

Wastewater Treatment with Ionizing Radiation

- -. Removal of harmful impurities (COD, BOD, S/S etc.)
- -. Removal of colour, odour etc.
- -. Disinfection of microorganisms (Coli-form & pathogenic organisms)
- -. Destruction of endocrine disrupter and synthetic chemicals

Wastewater Treatment with Ionizing Radiation

Wastewater Treatment

Textile Dyeing Wastewater Treatment Plant in Korea

Wastewater Treatment

Full-scale application of electron beam wastewater treatment plant for 10,000 m³/d of textile dyeing wastewater with 1 MeV, 400 kW accelerator.

Textile Dyeing Wastewater Plant in China

Wastewater Treatment

IAEA support Wastewater Treatment through TC projects

CPR1008: Treating Industrial Wastewater with Electron Beam Accelerator and Biological Treatment Methods (2012-2015)

Industrial plant (30 000 m³/d) for textile dyeing wastewater constructed in China

How can this technology become more active?

1. Public Acceptance

2. Regulatory works from Authorities

3. Engineering Problems ? (Research to Business)

- -. Electron Energy : Penetration in water and sludge
- -. Beam Power : Productivity
- -. Reliability
- -. Respond to Emergency
- 4. Economics
- -. Competitions with conventional technology
- -. Reduce doses by combining with other methods
- -. Laboratory to Commercial Plant

Laboratory to Commercial Plant via Mobile EB

Lab. Scale Experiments (1~50m³/day)

Pilot scale Experiments (500~1,000m³/day)

Industrial scale Wastewater Plant (10,000m³/day)

Industrial scale EBFGT Plant (~600,000Nm³/h)

Lab. Scale Experiments (1~10,000Nm³/h)

Laboratory to Commercial Plant via Mobile EB

Wastewater treatment with Mobile e-beam in Korea

Mobile e-beam in Flue gas Purification from oil-refinery in Saudi Arabia

Transportable Electron Beam in IAEA

Radiation Technology for Pollution Control

Completed CRPs and moved to TC projects, Publication under preparation CRPs (F23036, F22081)

New CRP (F22080)

Plastic Recycling

FACTS...What do we know?

What happens to all the plastic waste?

8.3 billion tonnes plastic have been produced
6.3 billion metric tonnes now plastic waste
9% plastic waste recycled
12% plastic waste incinerated
60% in landfills or environment
>150 million metric tonnes reached the oceans

https://theoceancleanup.com/updates/quantifying-global-plastic-inputs-from-rivers-into-oceans/ (2019)

Adaptation UNEP-CHW-PWPWG.1-INF-4.English (1)

Value Chain: From linear to circular economy

Plastic Recycling

Treat and C ® combine with other materials Polymer sorting Nuclear innovation! Å Conversion to fuel Breakdown to components

www.iaea.org/nutec-plastics

Sort pelletized plastic waste according to polymer type for recycling via irradiation

Breakdown plastic polymers for generating new plastic products

Convert plastic into fuel and feedstocks through radiolysis (irradiation & chemical recycling)

Treat plastic to make composite materials with tailored properties

Greenhouse Gases and Global Warming

- Greenhouse gases: the gases in the atmosphere that raise the surface temperature of planet Earth.
- Typically, carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and fluorinated gases
- Human activities since the beginning of the Industrial Revolution have increased atmospheric methane concentrations by over 150% and carbon dioxide by over 50%.

Greenhouse Gases and Global Warming

Global carbon emissions from fossil fuels have significantly increased since 1900.

Global Carbon Emissions from Fossil Fuels, 1900-2014

Boden, T.A., Marland, G., and Andres, R.J. (2017). Global, Regional, and National Fossil-Fuel CO2Emissions. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

Global Emissions by Economic Sector

deforestation.

Transportation : fossil fuels burned for road, rail, air, and marine transportation.Buildings : onsite energy generation and burning fuels for heat in buildings or cooking

Materials for Carbon Capture and Utilization (CCU)

International Atomic Energy Agency (IAEA)

Set up as the world's "Atoms for Peace" organization in 1957

In 1953, Dwight Eisenhower, the President of the United States, called for the establishment of an international atomic energy agency

178 Member States

IAEA promotes safe, secure and peaceful nuclear technologies.

International Atomic Energy Agency (IAEA)

Headquarters Vienna

International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Tel: (+43-1) 2600-0 Fax: (+43-1) 2600-7 Email: Official Mail Website: www.iaea.org

Liaison Office New York

IAEA Office at the United Nations

1 United Nations Plaza, Room DC-1-1155 New York, NY 10017 USA Tel: (001) 212-963-6010 or 6011; Fax: (001) 917-367-4046 Email: iaeany@un.org

Liaison Office Geneva

IAEA Office in Geneva United Nations, Room B 426 Palais des Nations, CH-1211 Geneva 10, Switzerland Tel: (+41-22) 917-3620 Fax: (+41-22) 917-0066 Email: iaeage@unog.ch

- 2300 professional and support staff
- Headquarters in Vienna
- 2 scientific laboratories and research centres
- Liaison offices in New York and Geneva

Science, Technology and Innovation

How do we work?

12 unique laboratories

Water Resources

Food & Agriculture

Human Health

Nuclear Science

Environment

Marine Environment

Isotope Hydrology

Sterile Insect Technique

Plant Breeding

Coordinated Research Projects in IAEA

Objective:

Solving technical issues of common interest in the peaceful use of nuclear technology by coordinating research

cover the remainder of the CRP.

networks in developing and developed countries

- Composition: 10-15 scientists in Member States; €5,000 - 8,000 per scientist per year
- Duration: 3-5 years

Coordinated Research Projects in IAEA

31 Research Coordination Meetings (majority virtual)

actions understandin

research Action

Over 100 Member States

7.0 million in 2020

NACA, 2021 data

IAEA Collaborating Centres

How do we work?

IAEA Technical Cooperation Programme

• The technical cooperation (TC) programme is the IAEA's main vehicle for delivering services from across the house to Member States

• The Department of Technical Cooperation is responsible for managing the TC programme.

• The technical Departments are responsible for the technical integrity of the programme

TC programme is guided by:

- IAEA Statute (1956)
- The Technical Cooperation Strategy (est. 1997, rev. 2002)
- Agency's Medium Term Strategy (2018-2023)
- General Conference Resolution
- Decisions of Governing Bodies
- Revised Supplementary Agreement
- INF/CIRC 267 (Guiding Principles & General Operating Rules)

Technology Transfer: An Analogy

IAEA support Wastewater Treatment through TC projects

Related TC projects on water treatment

 RAS/1/023 - Developing and Upscaling of Radiation Grafted Materials for Water Treatment (2018 - 2021)

Objective: To make technologies affordable to small and medium scale industries in order to mitigate industrial waste water pollution. Radiation grafted materials have to be easily available for emergency purposes, especially in cases of calamities. One of the possible alternatives would be the use of radiation grafted materials which can highly adsorb these contaminants.

- BRA/1/035 Establishing a Mobile Unit with an Electron Beam Accelerator to Treat Industrial Effluents for Reuse Purposes (2016 - 2019)

Objective: To enlarge the national capacity to treat industrial effluents using electron beam accelerators, the mobile unit treating effluents on site from 1m³/h up to 1000m³/day, will provide an effective facility between a laboratory-scale plant to a large-scale plant with the objective to demonstrate the efficacy and transfer the technology.

Removal of Toxic Metals Reduction to the level o

Collection of Scandium

IAEA Global Water Analysis Laboratory (GloWAL) Network

Fulfil basic human needs

OMS4CLIMATE ATOMS4CLIMATE ATOMS4CLIMATE ATOM CLIMATE ATOMS4CLIMATE ATOMS4CLIMA OMS4CLIMATE ATOMS4CLIMATE ATOMS4CLIMA

