

Second Target Station Vessel Systems Preliminary Design Update

Christopher Anton, Cameron Eiland, Hogan Knott, Min-Tsung Kao, Thomas McManamy, Michael Strong Second Target Station Project, Oak Ridge National Laboratory

Introduction

- The Second Target Station (STS) is currently under preliminary design at Oak **Ridge National Laboratory (ORNL)**
- STS will significantly expand the existing capabilities of the Spallation Neutron Source (SNS) at ORNL by constructing a second target station that utilizes the existing SNS accelerator and provides a world leading source of cold (long wavelength) neutrons
- The Vessel Systems scope within STS consists primarily of the Core Vessel, Core Vessel Shielding and Core Vessel Nozzle Extensions

Target Monolith Layout

Core Vessel Thermal Analysis

Vessel Systems Layout

Internal Shielding Thermal Analysis

Core Vessel Layer 1 Internal Cooled Shielding

ΖX Stainless Steel Temperature

Internal Water Temperature

Design Highlights

- Core Vessel and Nozzle Extensions constructed of 316L SS
- Core Vessel environment will be rough vacuum or sub-atmospheric helium
- Core Vessel mass = 44 metric tons
- Nozzle Extension mass = 0.42 metric tons each (Qty 18 total, with 1 custom) nozzle)

Nozzle Extension Development

- Initial nozzle extension design was bolted and welded, with a cost of \$600k ea.
- Current nozzle extension design is welded tube, with a cost of \$125k ea.
- Nozzle extensions contain core vessel environment

76.3

• Seal welded to the Core Vessel beltline

Solid model with water filled

• Provides alignment of neutron optical guides

• Core Vessel Shielding total mass = 199.2 metric tons

• Bottom 3 shielding layers of shielding and Core Vessel beltline are water cooled

