

Automating the coupled neutronics-structural stress optimization at ORNL's Second Target Station (STS) -neutronics aspects

Lukas Zavorka Kristel Ghoos Joseph Tipton Igor Remec

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL Second Target Station (STS)

Srivastava et al., Nat. Comm. 2017 Baneriee et al., Science 356, 2017

Second

Target Station

STS vs. FTS

FTS (upgraded)

- Short (<1 µs) 1.3 GeV proton pulses
- 45 pulses/second
- 2 MW beam power
- 44.4 kJ per proton pulse
- Large beam footprint (140 cm²)
- Hg target

CAK RIDGE

- 4 moderators (water & hydrogen)
- Moderator viewed area 10 x 12 cm
- Coupled & decoupled moderators
- In operation since 2006

STS

- Short (<1 μs) 1.3 GeV proton pulses
- 15 pulses/second
- 700 kW beam power
- 46.7 kJ per proton pulse
- Smaller beam footprint (30-90 cm²)
- W target (water cooled)
- 2 moderators (hydrogen)
- Moderator viewed area 3 x 3 cm
- Coupled moderators
- Scheduled commissioning ~2035
- MODERN SIMULATION AND OPTIMIZATION TOOLS

Target & Moderator-Reflector Assembly (MRA)

- Rotating W target
- 1.3 GeV proton beam (<1 µs)
- Coupled low-dimensional (flat) cylindrical and tube moderators designed for high brightness
- Para-hydrogen at 20 K
- Water premoderator
- Be reflector

CAK RIDGE National Laboratory

- Tightly coupled with the target (10 mm gap)
- Serve 12 + 6 instruments

Goal of the STS design optimization

- Maximize neutron brightness while maintaining structural integrity
- Multi-physics multi-parameter study
- Coupled neutronics and structural stress optimization
 - Optimal parameters for separate neutronics and structural analyses can differ greatly
 - Improved structural integrity reduces neutronics performance
- Problems with many design parameters
 - Target and moderator dimensions
 - Beam footprint on target
- Quantities span broad ranges in *E*, *t*, *L*, etc.
- Limited resources for such studies in the past
- Modern tools necessary for efficient optimization

Once upon a time...

Still actual???

Neutronics MCNP model

Constructive Solid Geometry (CSG) Simplified geometry Details omitted Manual model conversion Time demanding Prone to human errors

WEEKS AND MONTHS

Analysts working on different projects

Cartesian mesh tallies

Low spatial distribution Mixed materials at boundaries

Once upon a time...

- Different components often optimized separately
- Optimized component "A" rarely re-optimized after the design of a component "B" has changed
- Powerful tools, nevertheless!
- STS needs new tools

[1] F. B. Brown et al., Monte Carlo Parameter Studies and Uncertainty Analysis with MCNP5, PHYSOR-2004, *American Nuclear Society Reactor Physics Topical Meeting*, Chicago, IL, April 25-29 (2004)

[2] J. Mockus et al, *Bayesian Heuristic Approach to discrete and Global Optimization*, Kluwer Academic Publishers, Boston/London/Dordrecht (1996).

L. Zavorka et al., An unstructured mesh based neutronics optimization workflow, NIM A 1052 (2023) 168252.

- Direct CAD to MCNP model conversion
 - Fast, efficient, reduces potential for introducing errors
- High-fidelity neutronics models
 - High-quality data with high spatial resolution
- Results (heating, dpa, ...) available for subsequent analyses
 - Direct export/import for structural stress/dynamic FEA

- Departure from the cartesian mesh tallies
 - UM serves as a mesh tally for energy deposition
- Time to explore many more alternative target designs
 - Quick throughput and decision to accept/reject

Original MCNP PSTUDY vs novel UM based optimization

~10% performance difference when using a simple vs. high-fidelity model

UM models contain variable thicknesses of the walls to withstand H_2/H_2O pressure

CAK RIDGE

- Scripted model re-generation, conversion to UM, MCNP input generation
 - CREO/Solidworks, SpaceClaim, Attila4MC, MCNP, Sierra, Dakota run from a command line
- Controlled by in-house bat/bash scripts on Win/Linux
- On-line data analysis
- Captures errors, restarts if necessary

	<pre>interpretation in the interpretation is a serie of the interpretation is serie of the interpre</pre>	File Edit Format View Help num_material_assignments 12 material_assignments SHROUD-m1 Steel TA_CLADDING_SOLID_1-m1 Ta1 TUNGSTEN_BLK-m1 W1 Component1-m1 Water SHROUD-m2 Steel TA_CLADDING_SOLID_1-m2 Ta2 TUNGSTEN_BLK-m2 W2 Component1-m2 Water
	<pre><surface-smoothing>3</surface-smoothing> <volume-optimization>true</volume-optimization> <volume-smoothing>1</volume-smoothing> <lock-surface-mesh>true</lock-surface-mesh> <attributes></attributes> <attributes></attributes> <advanced-controls></advanced-controls> <curvature-refinement min_mesh_size="0.0025" aniso="tr </meshing-spec></pre>	SHROUD-m3 Steel TA_CLADDING_SOLID_1-m3 Ta3 TUNGSTEN_BLK-m3 W3 Component1-m3 Water end_material_assignments end_output_abaqus_metadata modifications strip_side_info true shift_bnd_nodes false end_modifications end_rtt_mesh_editor_input

- Controlled by Dakota Software Toolkit
- State-of-the-art optimization methods (efficient global, ...)
 - Optimal solution found faster
- Parameter and sensitivity study

Key features

Only one parametric solid CAD engineering model is necessary

- Contains all the details + provides detailed results
- The same CAD model is used both for neutronics and FEA
- No manual conversion to an MCNP model (potential error reduction)
- Coupled multi-physics multi-parameter optimization
- <u>Reduction of the time per one iteration from weeks/months to hours</u>
- Many more design options can be explored and analyzed
- Efficient optimization of the coupled problems with a large number of design parameters (>10)

Applications

- Neutronics optimization of the moderator-reflector assembly
 - 10 geometry parameters
- Neutronics and structural optimization of the target
 - 6 geometry parameters
- Coupled Target + Moderator + + Beam optimization
 - 10 geometry parameters for the moderator
 - 12 geometry parameters for the target
 - 4 parameters for the beam on target

Neutronics optimization of the moderator-reflector

Coupled neutronics & structural optimization of the target

Detailed energy deposition distribution from MCNP as input to FEA

• Factor of Safety (FOS)

P7

Angle between object

Overall lengt

(Z) - X

- Measure for the mechanical performance of the target (irradiated after 10 years of operation)
- Goodman diagram of a failure theory extracted from dynamic response

Coupled neutronics & structural optimization of the target

Coupled neutronics & structural optimization of the target

Coupled Target + Moderator + Beam optimization Latest target design 1.00E+02 6.31E+01 3.98E+01 1.58E+01 1.00E+01 6.31E+00 3.98E+00 2.51E+00 1.58E+00 1.00E+00 6.31E-01 3.98E+01 3.98E+01 Target_height LasagnaOpt_Fatigu Goodman --- 0.89 FOS Element ≈2*sigma_y sigma -1000 -800 -600 -400 -200 Mean Stress [MPa] 1e-8 **P5 P1** P7 P11 P12 Pareto front +/- 2 sigma _ _ _ **‡P2** 1.6 reference monolithic all runs P8 Arc radius 1mm Arc angle 90° **P3** Pareto front Arc length 1.5708mm 1.5 🛨 initial lasagna n 188 A 9 Angle between obje 180° (Paralle (Z) + X Overall length 16mm 1.4 ti 1.3 P10 P14 2.12 FOS Element P13 1.2 1 5311 3104 1.1**P9**

1.0

5

6

peak

8

1e-13

-750 -500 -250

250

Mean Stress [MPa]

- 2 - 1.5 - 0.891

P6

Cylinder diameter 10m Fillet Radius 5mm

2356.7195n

Conclusion

- Developed an automated optimization workflow for coupled neutronics and structural stress analyses
- Reduced time per one iteration from weeks/months to hours
- Optimized moderators and several target designs
- Getting more efficient and moving towards more complicated problems

- Essential tool in the STS design process
- Can be applied at other research and accelerator facilities

Thank you!

STS Moderator Performance

Peak brightness

- Tube moderator delivers superior brightness to eventually 6 instruments
- Cylindrical moderator has superior time resolution (event. 12 instruments)

23