

High Current Accelerator-based Neutron Sources – The HBS project for a next generation neutron facility

Thomas Gutberlet, JCNS

Neutron Landscape – the global view

How to get neutrons

Nuclear fission

Spallation

Nuclear processes

Reactor based neutron source (ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation based neutron source (ESS, ISIS, SINQ, SNS, CSNS, J-PARC, KEK) Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN

a.o.)

How to get neutrons

Ref.: LLB - Compact Neutron Sources for Neutron Scattering

Nuclear processes

Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN

a.o.)

h Centre for Neutron Science

HIGH

SOURCE

Accelerator Based Neutron Sources

From CANS* to HiCANS**

(*Compact Accelerator based Neutron Source, ** High-Current Accelerator based Neutron Source)

0.01 kW	0.1 kW	1 kW	10 kW	100 kW
0.001-0.01 mA	0.01-1 mA	0.5-5 mA	1-20 mA	50-100 mA
~10 ¹¹ n/s	~10 ¹² n/s	~10 ¹³ n/s	~10 ¹⁴ n/s	~10 ¹⁵ n/s

10 Mio EUR

Running CANS facilities:

LENS, Indiana University (USA) HUNS, Hokaido University (Japan) RANS, RIKEN (Japan) NUANS, Nagoya University (Japan) ¹ 和古屋大学 CPHS, Tsinghua University (China) IREN, JINR Dubna (Russia)

CPHS -

🗵 IREN

HiCANS projects:

HBS, JCNS (Germany) SONATE, CEA LLB (France) ARGITU, ESS Bilbao (Spain) LENOS, INFN LNL (Italy) SARAF, SOREQ (Israel)

400 Mio EUR

https://elenaneutron.iff.kfajuelich.de/

Accelerator Based Neutron Sources

From CANS* to HiCANS**

Advantages / drawbacks of HiCANS

- Low energy protons (10-100 MeV vs 1 GeV)
- "Light" shielding (20-100 tons vs 6000 tons)
- Instrument line starts from the inside of the moderator
- Less high energy neutrons (less secondary background)
- Reduced costs
- Accelerator of 20-100 m versus 600 m at ESS
- HiCANS is not a nuclear facility
- HICANS are scalable on demand

Flux is intrinsically limited by peak current (I_{peak} ~ 100 mA)

CANS and HiCANS projects world-wide

HBS project: A HiCANS facility

Project rationale

- Accelerator driven pulsed neutron source (-> HiCANS)
- Optimized for neutron scattering on small samples
- National medium flux neutron facility
- Reasonable investment and operational costs

Forschungszentrum

HBS project: A HiCANS facility

Project rationale

High current linear accelerator

- 100 mA, 70 MeV pulsed proton beam
- Variable frequency

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Every beam port serves only 1 Instrument

- Optimize cold source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

Small shielding

- Neutron guide around cold source
- Chopper at <2 m from target

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/_node.html

Forschungszentrum

Peak beam power and average beam power levels of proton linacs

Concept

SOURCE

for Neutron Science

Room Temperature Solution

- Much simpler technology
- Easy access to all components
- No cryo-plant: less cost
- No cryo-modules: less operation cost
- Seam losses less severe (quenches): more reliable...
- Easier beam dynamics (no additional drifts due to cold-warm-transitions)
- Already available technology

A room temperature linac is the most reasonable and safe solution

Peak beam power: 7 MW

Peak RF power: ≈12 MW

Room Temperature Solution

The design of the HBS Linac provides maximum flexibility:

- ➤ (Almost) every pulse scheme
- Variable beam energy
- ➢ Duty factor 0-25%

DTL Beam Dynamics

CH-Cavities

Shunt Impedance CH-cavities

Required RF Power

- CH-1 MYRRHA design
- Tests with up to 40 kW/m cw were successfully performed
- First thermal simulations

HBS Multiplexer

Distributing the protons

Required	Specifications	Unit	Detail/Comment
Particle type	protons	N/A	user requirement
Accelerator type	RF Linac	N/A	
Beam current	100	mA	output current
Final energy	70	MeV	User requirement
Beam duty factor	4.8	%	User requirement
RF duty factor	10	%	Required for cavity filling
Pulse length	167/667	μ s	User requirement
Repetition rate	96/96/24	Hz	User Requirement
Average beam power	336	kW	
Peak beam power	7	MW	
Availability	>95	%	During scheduled operation
Maintainability	hands-on	N/A	
Life time	>25	years	
Total Linac length	<100	m	

HBS Multiplexer

1.6

1.4 1.2

> 0.8 0.6 0.4

0.2

Concept

Forschungszentrum 17/24

JÜLICH

HIGH

SOURCE

Centre for Neutron Science

BRILLIANCE

HBS Multiplexer

JÜLICH

Forschungszentrum

Proof of concept – Three-Field Magnet (TFM)

→ 25 % safety margin

ch Centre for Neutron Science

HIGH

BRILLIANCE SOURCE

HBS Target

Target material

Proton induced neutron yield

P. Zakalek et al. EPJ Web of Conf. 231, 03006 (2020)

HBS Target

Target for 100 kW HBS pulsed proton beam

HIGH

HBS Target

Design

- Material: Tantalum
- Required: high blistering threshold
- Wanted: high power density
- Goal: 100 kW at 100 cm² (1kW/cm²)
- Coolant: Water (8 m/s inside channels)
- Reliable

Succesful test at JUDITH-2 electron gun with up to 1 kW/cm² heat input on the surface

HBS Moderator

Thermal/cold neutron spectrum

Time [µs]

Cold moderator dimensions

HBS Moderator

Solid methane system

- Liquefaction and freezing of methane (CH₄) by LHe cooling
- Measurements with liquid CH_4 @ 100 K and solid CH_4 @ 70 K, 40 K, 20 K and 7.4 K
- ➢ Clear shift to longer wavelengths and higher intensities for T_{Mod} ↓
- ➤ Thermal peak still visible for lower temperatures (bispectral) → moderator too small

HBS Instrumentation

Peak brilliance at the 24 Hz HBS target station

HBS Instrumentation

	Instrument	$\tau_{\rm pulse}$	$L_{\rm tot}$	Det. Cov.	λ_{\min}	λ_{\max}	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\min}}$	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\text{max}}}$	$\phi_{ m average}$	Remarks
		[µs]	[m]	[Sr.]	[Å]	[Å]	[%]	[%]	10^6 [n/cm ² s]	
24.1	High Throughput SANS	667	24	0.01	2.0	8.7	5.5	1.3	2.2	Low angle
			15	0.7	2.0	8.7	8.8	2.0	220	Wide angle
24.2	SANS + GISANS	667	24	0.01	3.0	9.8	3.7	1.1	2.2	Low angle
			15	0.7	3.0	9.8	5.9	1.8	220	Wide angle
24.3	SANS + VSANS	667	23	0.01	2.0	9.0	5.7	1.3	2.7	Low angle
			15	0.7	2.0	9.0	8.8	2.0	220	Wide angle
24.4	Offspecular Reflectometer	667	13	0.08	2.0	12.5	10.1	1.6	1.1	
24.5	Therm. Powder Diffr.	29	80	6.25	0.6	2.7	0.2	0.1	0.7	High Res., 2 frames
		667	80	6.25	0.6	2.7	5.5	1.2	120	High Int., 2 frames
24.6	NSE	667	35	0.04	5	16	1.3	0.5		Very cold neutrons
24.7	NRSE	667	14	0.04	5	16	3.8	1.2		Very cold neutrons
24.8	Backscattering Spectrometer	70	85	2.5	5.8	7.8	0.06	0.04	8	
24.9	PGNAA-1	667	12.4		0.03	9			220	
24.10	NDP	667	15		2	15			44000	
96.1	Hor. Reflectometer	252	11	0.01	5	8.64	1.8	1.0	87	Small sample
		252	11	0.01	1.6	5.25	5.7	1.7	14	Multi Beam
96.2	Engineering Diffr.	35	21.8	3.0	0.8	2.68	0.8	0.2	0.5	
96.3	Diffuse scatt. Spectr.	252	21.5	2.39	2	3.9	2.3	1.2	96	
96.4	Pol. Diffuse Neutron Spectr.	252	21.5	2.04	2	3.9	2.3	1.2	21	
96.5	Small sample Diffr.	252	20.4	9	2	4	2.4	1.2	49	
96.6	Cold Chopper Spectr.	252	18.5	3.14	2	10	1.5	0.7	0.9	
96.7	Thermal Chopper Spectr.	252	60	3.14	0.9	3.5	2	0.5	0.1	5 frames
96.8	CRYSTOF	252	10.5	3.14	0.9	3.5	3	1.5	0.4	
96.9	Indirect Geom. Spectr.	252	60	1.7	3	3.7	0.6	0.4	120	
96.10	Cold imaging	252	15		1	15	6.6	0.4	1.6	High Res.
		252	5		1	15	19.9	1.3	12	High Int.
96.11	Thermal imaging	252	10		0.5	4.5	20	2.2	7.8	High Res.
		252	4		0.5	4.5	50	5.5	49	High Int.
96.12	Diffr. Imaging	252	35		1	15	2.8	0.2	8	
Epi.1	Dis. Mat. Diffr.	167	85	4.5	0.1	0.6	7.8	1.3		
Epi.2	PGNAA-2	167	21						4.4	
Epi.3	Epitherm, Imaging	167	35	0	1.8					

HBS Target-Moderator-Reflector Unit

ZEA-1 | ENGINEERING AND TECHNOLOGY Technology for Excellent Science

Experimental Platform at Big Karl @ COSY

HIGH

Moderator Tests

Methane, ethane, para-IH₂

- Moderator volume fillable with different gases
- Neutron guide in distance of 40 cm transporting efficiently cold neutrons

Imaging Tests

Imaging measurements with \sim 30 neutrons/cm₂/s

- Time-of-Flight (ToF) imaging proof of concept at 1m to source successful.

- High signal to noise despite proximity to target.
- Using an event counting detector, images with good counting statistics at ~250um resolution in tenth of minutes already possible.

- Due to short distance to source, energy resolution is low but sufficient for e.g. hydrogen quantification or general qualitative isotopic analysis via ToF.

Contribution from: Adrian Lasko (TUM) Alexander Wolfertz (TUM) Richi Kumar (HEREON) Radiograph of a Cactus (not normalized atten.)

Epithermal Neutron Radiograph

115 mm

15 mm

Thermal Neutron Radiograph

Detector / Monitor Tests

• Port 2: cold methane moderator

- Spectrum from Methane cold moderator
- 7.7 m flight path in evacuated neutron guide; div. $0.1^{\circ} \times 0.1^{\circ}$ (h x v)
- shielding at the sample position
- sync. T0-signal
- Mitglied der Helmholtz-Gemeinschaft

SOURCE

Centre for Neutron Science

hereor

Pixel = 1 3000

Forschungszentrum

HBS project: A HiCANS facility

Road map

HBS Technical Design Report

Published summer 2023

https://hbs.fz-juelich.de/?page_id=349

HBS Vision

A healthy landscape of large and small neutron sources complementing each other

HBS Team

J. Baggemann Th. Brückel M. El Barbari J. Chen T. Claudio-Weber T. Cronert (†) Q. Ding P.-E. Doege T. Gutberlet J. Li K. Lieutenant Z. Ma E. Mauerhofer N. Ophoven T. Randriamalala I. Pechenizkiy U. Rücker N. Schmidt A. Schwab D. Shabani

- E. Vezhlev
- J. Voigt
- P. Zakalek - Core team

JÜLICH

ZEA-1: Y. Bessler R. Hanslik R. Achten F. Löchte E. Rosenthal R. Rings

- Engineering

IKP-4:

O. Felden R. Gebel A. Lehrach M. Rimmler R. Similon - Nuclear physics

INM-5: - Radio isotopes

Forschungszentrum

M. Strothmann

B. Neumaier

Nukleare Entsorgung RWITHAACHEN S. Böhm

J.P. Dabruck R. Nabbi

TECHNISCHE UNIVERSITÄT DRESDEN C. Lange T. Langnickel Ch.Haberstroh

M. Klaus S. Eisenhut

- AKR-2, liquid H₂

- Accelerator

GSI Helmholtzzentrum für Schwerionenforschung GmbH W. Barth - Accelerator

A. Lasko A. Wolfertz

- JULIC Neutron **Platform Experiments**

