2024 INTERNATIONAL TOPICAL MEETING ON NUCLEAR APPLICATIONS OF ACCELERATORS, ACCELAPP'24 NORFOLK, VIRGINIA, USA, MARCH 17-21, 2024

COMPACT RF LINAC DESIGN FOR AN ACCELERATOR DRIVEN SYSTEM

Accelerator Applications 2024

March 17-21, 2024 Hosted by Sefferson Lab

BRAHIM MUSTAPHA Accelerator Physicist Physics Division Argonne National Laboratory

TAEK K. KIM Nuclear Scientist Nuclear Science & Engineering Argonne National Laboratory

JERRY A. NOLEN Senior Physicist

Argonne Distinguished Fellow Argonne National Laboratory

OUTLINE

□Brief introduction – Transmutation of nuclear waste – ADS

Compact proton RF linac design as an ADS driver

□Recent developments & proton / ion linac design choices

Linac lattice & Beam dynamics design

Discussion - Challenges & New technologies

INTRODUCTION – NUCLEAR WASTE

□Nuclear reactors produce energy, but they also produce significant amount of long-lived nuclear waste: minor actinides, long-lived fission products ...

Figure from B. Yee-Rendon, See References

TRANSMUTATION OF NUCLEAR WASTE – ACCELERATOR DRIVEN SYSTEM (ADS)

□An ADS system consists of a subcritical reactor driven by an accelerator, with the right fuel mix it can burn long-lived waste while producing energy

Shown example is from Japan's Atomic Energy Agency

Other ongoing projects include:

□Chinese ADS (CiADS)

□MYRRHA in Europe/Belgium

Figure from B. Yee-Rendon, See References

COMPACT PROTON RF LINAC DESIGN

□It consists of

- An ion source (IS)
- A radio-frequency quadrupole (RFQ)
- Three sections of half-wave resonator superconducting cavities (HWR)
- Two sections of elliptical cell superconducting cavities (ELL)
- The linac is only 150 m in length, it's about half the length of the SNS linac with the same 1 GeV output energy, but for 25 mA cw proton beam
- ✓ It takes advantage of the latest superconducting RF developments, especially, the high accelerating voltages for SC cavities, and compact cryomodule design

SC CAVITY TYPES – FREQUENCY & VELOCITY AccelApp²⁴

6.26e+06 + 4.74e+06 -

3.22e+06 -1.71e+06 -1.71e+06

-6.25++06

6.41e+03 + 4.85e+03 -3.3e+03 -1.75e+03-

-1.75e+03 -3.3e+03

-4.85e+03 --6.41e+03 +

HWR - Type III 325 MHz - $\beta \sim 0.48$

Elliptical - Type I 650 MHz - β ~ 0.64

Elliptical - Type II 650 MHz - β ~ 0.85

EM Field Distributions for HWR-2

EM Field Distributions for ELL-2

SC CAVITY DESIGN – VOLTAGE PROFILE

SC CAVITY DESIGN – RF PARAMETERS

Cavity type	HWR-1	HWR-2	HWR-3	ELL-1	ELL-2
Frequency, MHz	162.5	162.5	325	650	650
Optimum β	0.12	0.24	0.5	0.65	0.85
Effective length, cm	22.1	44.6	46.1	74.5	98.1
Epk/Eacc	5.0	4.8	4.1	2.5	2.4
Bpk/Eacc, mT/(MV/m)	5.9	6.2	7.9	4.6	4.4
R/Q ratio, Ω	293	332	292	377	551
G factor, Ω	50	73	117	192	236
Voltage at Epk=40 MV/m, MV	1.8	3.7	4.5	11.9	16.2
Voltage at Bpk=70 mT, MV	2.6	5.0	4.1	11.2	15.5

RECENT DEVELOPMENTS & RF LINAC LATTICE DESIGN CHOICES

□ The key design choices for compact proton & ion RF linacs:

- Optimized Superconducting cavity design for high voltage and low cryogenic losses
- Superconducting solenoid focusing inside long cryomodules to minimize warm transitions and the number of required cryomodules.
- Cold BPMs attached to SC cavities inside cryomodule to reduce the number of diagnostics between cryomodules
- Horizontal and vertical steering correctors built into solenoids requiring no additional space for correctors along the beam-line.
- With these choices, the drift spaces between cryomodules are reduced, benefiting the beam dynamics from a more periodic focusing and acceleration lattice

LINAC DESIGN - LATTICE & CRYOMODULES

Section	HWR-1	HWR-2	HWR-3	ELL-1	ELL-2	Total
Frequency, MHz	162.5	162.5	325	650	650	
Input energy, MeV	3	10	46	153	430	
Output energy, MeV	10	46	153	430	1001	
Voltage per cavity, MV	1.5	3.0	4.5	11.5	15.7	
Synchronous phase, deg	-30	-25	-25	-25	-25	
Cavities per cryostat	7	7	7	6	6	
Cryostat arrangement	7(sc)	3(s2c)sc	3(s2c)sc	2(s3c)	2(s3c)	
Number of cryostats	1	2	4	5	7	19
Number of cavities	7	14	28	30	42	121
Number of solenoids	7	8	16	10	14	55

LINAC DESIGN – BEAM DYNAMICS - 0 MA

LINAC DESIGN – BEAM DYNAMICS - 25 MA

25 mA

Z (m)

DISCUSSION - CHALLENGES & NEW TECHNOLOGIES

- CW operations of a high-intensity proton/ion linac is very challenging due to the high beam power involved and potential damage
- An ADS system requires a driver linac with high reliability to maintain a steady state in the target and reactor system, and minimize thermal stress
- Building redundancy in the driver linac and not operating cavities at the voltage limit can address some of the reliability issues
- New superconducting RF technology such as Nb₃Sn has the potential of significantly reducing the operating cost by not requiring a large cryogenic installations...

RELEVANT REFERENCES

- □ "Overview of ADS projects in the world", B. Yee-Rendon, Proceedings of Linac-2022 Conference, 28th Aug. 2nd Sep. 2022, Liverpool, UK
- □ "ADS design concept for disposing of the U.S. spent nuclear fuel inventory",
 - Y. Gohar et al, Annals of Nuclear Energy 160 (2021) 108385
- "Design options for a superconducting ion linac", B. Mustapha et al, NIM A 992 (2021) 165014
- Advanced low-beta cavity development for proton and ion accelerators",
 Z. Conway et al, NIM B 350 (2015) 94-98

MANY THANKS TO

□ Peter Ostroumov, now at MSU/FRIB

Sergey Kutsaev, now at Radiabeam

THANK YOU

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

