

2024 INTERNATIONAL TOPICAL MEETING ON NUCLEAR APPLICATIONS OF ACCELERATORS

Charge stripper ring for RIBF

Hiroshi Imao

on behalf of Accelerator Group at Nishina Center, RIKEN March 19th, 2024

Table of contents

- Introduction
 - Uranium acceleration
 - Charge strippers
- Upgrade plan with CSR
 - Concept and key features
 - R&D works
- Summary

RIKEN RI beam factory (RIBF)

RIBF

Cyclotron-based Heavy-ion accelerator for in-flight RI beams (since 2006) Super conducting ring cyclotron (SRC) is a main device.

Acceleration of ALL ions up to 345 MeV/u (70% of c) in CW mode

Intensity upgrade of ²³⁸U

Generation of in-flight fission RI beams (A~100) for elucidation of elemental synthesis Only 0.1% of the goal intensity 1 pµA (ion sources, strippers, space charge effects) Construction of next-generation facilities worldwide (FRIB(USA), FAIR(Germany),

in .		RRC	fRC	IRC	SRC
1	K value [MeV]	540	570	980	2600
	number of sectors	4	4	4	6
	velocity gain	4	2.1	1.5	1.5
	frequency range [MHz]	18-38	54.75	18-38	18-38
	weight [ton]	2300	1500	2700	8300

H. Okuno et al., IEEE Trans. Applied Superconductivity, 17 (2007) 1063.

World's first superconduting RING cyclotron B_{max}= 3.8 T, K = 2,600 MeV *Voltage gain* = 640 MV (cw) Total weight = 8,300 tons

Intensity upgrade of ²³⁸U

240-fold increase in beam intensity of ²³⁸U since 2008

- Improvements of 28GHz-ECRIS and injector (RILAC2)
- **He gas stripper** and graphite disk stripper (lifetime problem)
- Refinement of accelerator operation techniques
- RF cavities upgrade for RRC (space charge problem)

Acceleration scheme of ²³⁸U at RIBF

Conventional carbon foil strippers cannot be applied for U acceleration

Dependence of total charge stripping efficiency on mass

Low total charge stripping efficiency of about 5% (20% x 25%) for uranium is a bottleneck for further intensity upgrade

Upgrade plan with CSR

Concept of CSR

Advantages of CSR

A usual way to increase efficiency is to remove the He stripper and renew the fRC to accelerate U³⁵⁺ without strippers.

~300 t,

~1.5 MW

Layout

Basic parameters and components of CSR1

CSR1 basic parameter	
circumference [m]	44.639
circulation energy [MeV/u]	10.80
velocity β	0.151
number of bunches	18
revolution time [ns]	986.30
revolution charge state	59+-66+
injection charge state	35+
extraction charge state	64+

Main components

Bending magnet(BM1-8)						
Acceleration cavity (ACC1)						
Rebuncher (REB1-2)						
Energy correction (EC1)						
Q-mag station (QS1-4)						
He stripper(He)						
N2 stripper (N2)						

BM1-2 1.27 T, BM3-8 1.43 T 73 MHz 0.8 MV 109.5 MHz 1.3 MV 73 MHz 200 kV QS 73 units + EDM1 0.3 mg/cm² 0.1 mg/cm²

Key features of CSR

- Isometric orbits
- Principle of β function matching
- Quadrupole-magnet stations
- Two-stage stripper scheme
- Role of effective beam slit

Isometric orbits to hold bunch structure

• The system should be fitted in E6 room (construction site)

Lattice design

: R' = MR'M'

Full cell w/ Rebunchers

Mirror-symmetric focusing lattice

6x6 linear transfer matrix for one period R'

$$= \begin{pmatrix} 2M_{11}M_{22} - 1 & 2M_{12}M_{22} & 0 & 0 & \frac{2(a+b-2)}{M_{56}}M_{12}M_{26} & 2aM_{12}M_{26} \\ 2M_{21}M_{22} & 2M_{11}M_{22} - 1 & 0 & 0 & \frac{2(a+b-2)}{M_{56}}M_{11}M_{26} & 2aM_{11}M_{26} \\ 0 & 0 & 2M_{33}M_{44} - 1 & 2M_{34}M_{44} & 0 & 0 \\ 0 & 0 & 2M_{43}M_{33} & 2M_{33}M_{44} - 1 & 0 & 0 \\ -2aM_{11}M_{26} & -2aM_{12}M_{26} & 0 & 0 & 2ab-1 & 2\left\{\frac{a(ab-1)}{a+b-2}M_{56} - a^2M_{16}M_{26}\right\} \\ -\frac{2(a+b-2)}{M_{56}}M_{11}M_{26} & \frac{-2(a+b-2)}{M_{56}}M_{12}M_{26} & 0 & 0 & \frac{2b(a+b-2)}{M_{56}} & 2ab-1 - \frac{2a(a+b-2)}{M_{56}}M_{16}M_{26} \end{pmatrix}$$

Here, $a = (KA)_{66} = 1 - kA_{56}$ (magnification of dispersion) $b = 1 - kB_{56}$ looks a little complicated... ¹³

First order 6x6 matrix for one period

Impose the condition M₂₆=0 (angular dispersion of half cell),

- Betatron oscillation has no coupling in 3 directions
- Achromatic system ($R'_{16}=R'_{26}=0$)
- Orbit length is independent of angle and position $(R'_{51}=R'_{52}=0)$, symplectic condition)
- Beam ellipse at stripper is upright (fine transmission of stripper)

 M_{26} =0 and beta function matching (β_x , β_y , β_z) should be required.

→ Require at least 4 charge independent focusing elements for each charge

Q-magnet station (QS1-4) for charge independent focusing

MAMI C (Microtron HDSM at Mainz univ.)

 43 turns

 356 collection magnets

Close-up view of QS4

Crowded quadrupoles in parallel beamlines within a limited space, which is unprecedented.

The situation may be similar to the microtron.

Design works will be discussed later.

Beam envelopes, bunch lengths and dispersion functions for 8 charge states

Orbits satisfying matching conditions

Optimized with 37 + 5 quadrupoles

- β_x , β_y , β_z matchings
- M₂₆=0
- Q magnets can be placed
- Magnetic field gradient < ~20 T/m
- Beam envelopes < ~20 mm
- Momentum dispersion < ~8 m

The fact that ideal orbits was found within so many constraints is an important milestone.

Calculated integrated magnetic field gradient for quadrupole magnets in QS1-2

q	Name	Integrated gradient	q	Name	Integrated gradient	q	Name	Integrated gradient	q	Name	Integrated gradient
		[T]			[T]			[T]			[T]
59+	QT141a	1.8272	61+	QT341a	0.2516	63+	QD541a	1.6847	65+	QD741a	1.5762
	QT141b	-1.4516		QT341b	0.6901		QD541b	-1.1859		QD741b	-1.2722
	QT141c	1.3049		QT341c	0.6728		QD551a	2.8736		QD751a	2.6816
	QD151a	2.8128		QD351a	2.4064		QD551b	-1.8808		QD751b	-2.0000
	QD151b	-1.8128		QD351b	-1.5848						
60+	QD241a	2.1035	62 +	QD441a	1.9468	64+	QT641a	1.2235	66 +	QT841a	1.2962
	QD241b	-1.5355		QD441b	-1.6114		QT641b	-2.0171		QT841b	-1.9117
	QD251a	2.9288		QD451a	2.9120		QT641c	1.6175		QT841c	1.3721
	QD251b	-1.7864		QD451b	-1.9280		QD651a	2.6784		QT851a	2.3880
							QD651b	-1.6720		QT851b	-1.6192
	Α	II within t	te a	isible	e limits (-	<1	8 IT/	m1)		OT851c	-0.1696

2-stage stripper scheme

The charge conversion cycle, using a two-stage stripper, is unique and important.

A two-stage stripper with N₂ and He arranged in series will be used.

Gas stripper is required for high-power beams.

He gas is required to obtain high charge state (e.g., the current first He stripper)

Charge conversion cycle

Mean charge evolution as a function of thickness

Charge conversion cycle

Thin stripper to reduce emittance growth

The charge state is reset with N₂ stripper every circulation, e.g., Qm=55+

Average charge states during circulation are fixed, e.g., Qm=63+

Beam loss due to going outside the 8-charge window

Calculation results of stripping cycle

The use of a two-stage stripper is one of the key ideas for an efficient CSR.

Gas stripper for CSR1

Comparison of the specifications

		Stripper for CSR1	Present He stripper
Total length of system	[m]	2.7	2.7
Thickness of He stripper [mg/cm²]	0.3	0.6
Thickness of N ₂ stripper [mg/cm ²]	0.1	0.001
Target length of He	[cm]	30	50
Minimum orifice diameter	[mm]	20	12
Number of differential pumping stages	#	5	5
Maximum heat load	[W]	800	200
Gas circulation flow rate	[SLM]	1060	380

Three techniques of the He stripper

1) He recirculation with MBP array

2) Gas diffusers

3) N2 gas-jet curtain

Powerful beams make a hole even in the gas (ρ =PM/RT \propto 1/T) Even at the present beam intensities, the heat load causes the target thinning by about 10%

Derived from the TOF of U beams after stripper as a 20 function of beam current

on

Beam loss control with slits

Planned beam slits insertion position

Beam slits currently used for the He stripper

Water-cooled baffle type current detector 500 W max. for each side

Water-cooled electric slit 1 kW max. for each side

Emittance growth by the stripper is unavoidable in CSR1.

The losses at the physical aperture are controlled and localized by using appropriate slits.

CSR1 can serve as an "effective slitting system" to make high-quality beams.

Beam emittance and efficiency

3.243

3.388

Sources of emittance growth

	expected en	rrors (half width)	
x		total	0.40
COD	[mm]		0.20
high-order effects	[mm]		0.20
dispersion missmatching	[mm]		0.20
eigenelipse missmatching	[mm]		0.20
x'		total	0.87
angular straggling at stripper	[mrad]		0.80
high-order effects	[mrad]		0.20
angular dispersion missmatching	[mrad]		0.20
Eigenelipse missmatching	[mrad]		0.20
у		total	0.35
COD	[mm]		0.20
high-order effects	[mm]		0.20
eigenelipse missmatching	[mm]		0.20
y'		total	0.85
angular straggling at stripper	[mrad]		0.80
high-order effects	[mrad]		0.20
Eigenelipse missmatching	[mrad]		0.20
θ		total	0.07
path length error	[ns]		0.05
Eigenelipse missmatching	[ns]		0.03
power supply fluctuation	[ns]		0.03
δ		total	0.11
energy straggling at stripper	[%]		0.10
ununiformity of stripper	[%]		0.03
Eigenelipse missmatching	[%]		0.03

Space charge effect in CSR1

• Beam circulation with varying charge and intensity

• Complex causality due to beam mixing at the stripper

Envelope simulation with linear divergent force of SC

- · Causality in the space-charge corrections
- Optimum focusing parameters at various beam intensities
- Strategy to realize optimum parameters

Envelope simulation

Blow-up of the beam envelopes due to space charge forces

Correction of space charge effect

D_x F_x F_x D_x F_x F_x D_x F_x F_x D_x

The correction of the quadrupole magnet's focusing force was less than 7%.

We can calculate optimal parameters for various intensities

Before correction

0 0 Ο Ο ۲ 0 \bigcirc 15 20 position [m] 20th turn Well correc

After correction

Demonstration of beam tuning with BPM

The actual tuning of the high-intensity beam is carried out using BPM

8-segmented BPM (non-destructive monitor for high-intensity beams)

designed by T. Adachi

- Timing
- Intensity Position (x, y)

- **Quadrupole moment (x²-y²)**

Correction of space charge effects using BPMs was demonstrated. The simulator is being further upgraded.

Non-linear effect of SC with OPAL code

0.002

0.0005

0.000

-0.00

0.001

-0.002

0.0008

0.0006

0.0004

0.000

0.0002

0.0004

0.0006

0.0008

-0.001

0.0015 10 mA

y vs py

x vs px

-0.02 -0.01 0 0.01 0.02

ACCELERATOR Science and Technology

Nonlinear effects are not so significant at

R&D for Q-mag station

Coupling calculation between QMs

Calculated magnetic field of EBM1

Prototype of QMs and field measurements

(Patented, JPN 2020-056540)

Required magnetic field gradient was confirmed

Prototype of EBM1 and field measurements

Required magnetic field was confirmed

3D calculation for BMs

Conceptual design has been completed and mechanical design is being performed.

Design works for others

CSR1 can be used for CSR2.

Two-stage stripper design 3D models of RF cavities for CSR1 in calculations Two-gap HWR for ACC Single EC cavity **CH-type cavity for REB** Trimme (0.1 mg/cm 238U35+ He targe 3 ma/cTuner 775 Pa ~ 10⁻⁶ Pa 5 kPa Foreline 80 trap BEAM exchange pump (TMP) MBP x 4 TMP x 4 TMP x 4 \bigcirc \bigcirc DUM (EH2600) x 4 MBP(EH2600) x 4 Calculated by K. Yamada 900 Calculated by Y. Miyake Beam transport calculation from RRC to fRC EDS480 **Design for CSR2** Design of BPM and linearity of beam positions CSR1 and CSR2 compact (Patent Pending, JPN 2023-128268) Compact CSR2 with minimum functions The position error 25 RRC fRC is estimated to be 20 Calculated Position [mm] 10 -2 0 5 10 12 below 0.1 mm envelope DE Bunch interval ~5.2 m dispersion -20 Magnetic field 1.82 T -25 -25-20-15-10-5 0 5 10 15 20 25 The same design approach as Horizontal Beam Position [mm] Calculated by T. Adachi Calculated by T. Nishi

Summary

- Upgrade plan for 20-fold uranium intensity (2000 pnA, 164 kW) is underway.
- CSR is a key device to enhance charge conversion efficiency by recycling beams.
- Design works of CSR1 has progressed well.
- Design works for existing accelerator upgrade is also underway

- All members of accelerator group at Nishina center
- Y. Yano (RIKEN), M. Wakasugi (RIKEN, Kyoto U.)
- Hitachi engineering; T. Hori, M. Abe, T. Chiba, S. Taniyama, T. Imamura, N. Iwaki
- Sumitomo Heavy Industries; S. Kusuoka, J. Kanakura, A. Miura, Y. Matsubara
- SIGMAPHI; M. Sugitani, W. Beeckman
- TOYAMA; N. Kuwahara, D. Kobayashi

