H⁻, D⁻ & He⁺⁺ Source Developments for Medical Isotope Production Cyclotrons

Accelerator Development and Technology (ADT-1) Tuesday, March 19, 2024.

Thank You Very Much:

- Dr. Oliver Kester
- Dr. Brahim Mustapha

Presenter: Morgan Dehnel, Ph.D., Founder D-Pace, Inc.

Co-Authors: C. Hoehr, TRIUMF; S. Melanson, A. George, N. Savard D-Pace, Inc.

Monday, March 18, 2024

AccelApp

 [1] https://www.d-pace.com/?e=304
 [2] D. Potkins, M. Dehnel, S. Melanson, T. Stewart, P. Jackle, J. Hinderer, N. Jones, L. Williams, "Improvements to Siemens Eclipse PET Cyclotron Penning Ion Source", AIP Conference Proceedings, Vol. 2052, No. 1, P. 050016, AIP Publishing, 2018.
 [3] https://www.pantechnik.com/wp-content/uploads/2020/07/Supernanogan.pdf

Cyclotron Radioisotope Production: Topic Areas

- Category 1: Low Energy Cyclotron (Signpost: Proton 7 19 MeV, Typ. PET)
 - Internal Penning Ion Gauge (PIG) Ion Sources: H⁺/H⁻/D⁻
 - Present Status & Developments
 - External Volume-Cusp Ion Sources: H⁻/D⁻
 - Present Status & Developments

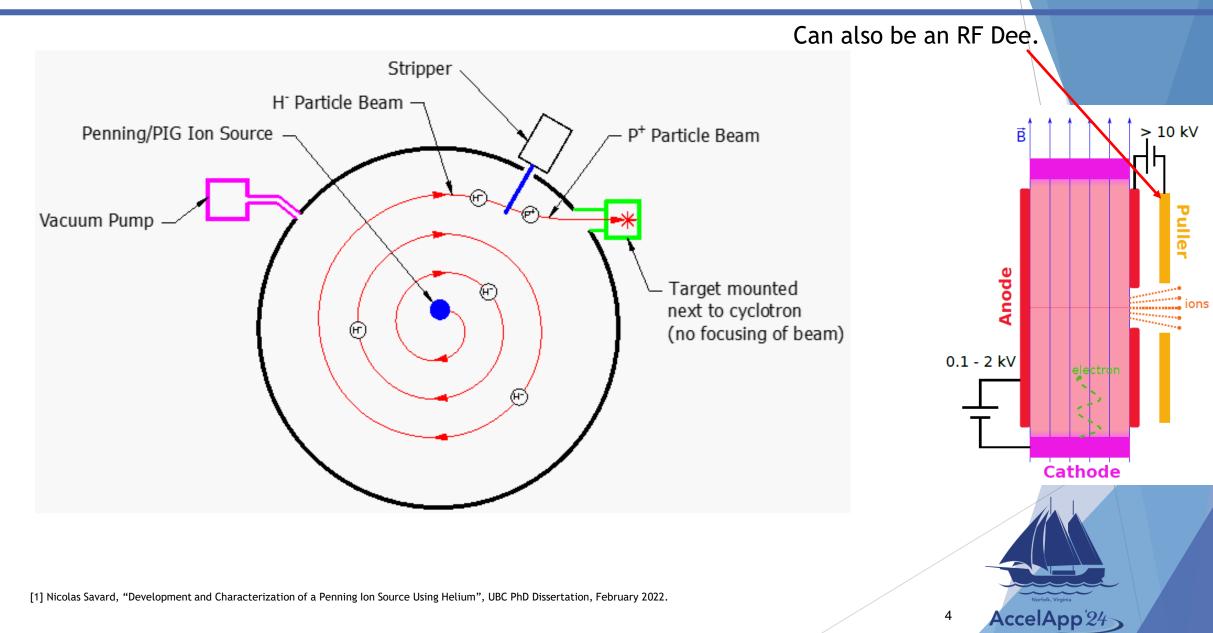
Category 2: <u>Medium Energy Cyclotron</u> (Signpost: Proton 20 – 45 MeV, Typ. SPECT, Therapeutic)

- External Volume-Cusp Ion Sources: H⁻/D⁻
 - Present Status & Developments
- ECR or Penning Source: ⁴He⁺⁺
 - Present Status & Developments

Category 3: <u>High Energy Cyclotron</u> (Signpost: Proton 45+ MeV, Typ. SPECT, Therapeutic)

- External Volume-Cusp Ion Sources: H⁻/D⁻
 - Present Status & Developments
- ECR or Penning Source: H^+ , H_2^+ , ${}^{3}He^{++}$, ${}^{4}He^{++}$
 - Present Status & Developments

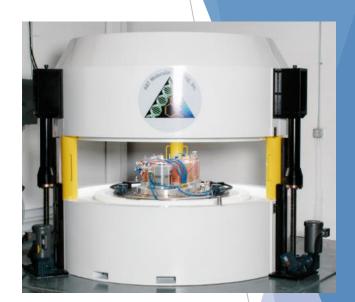
2


PRESENT STATUS

Internal Penning Ion Source

- BEST/ABT:	Canada/USA	BG-75
- GE:	Sweden	PETtrace TM 800, MINItrace TM Qilin
- IBA:	Belgium	KIUBE, Cyclone 18/9, Cyclone 18 HC
- Samyoung Unitech Co.	South Korea	Kotron-13
- Siemens:	USA	Eclipse
- SHI:	Japan	CYPRIS HM12, CYPRIS HM20
External Volume-Cusp Ion S	Source	
- ACSI	Canada	TR19, TR19/9
- BEST	Canada	B15P
- PMB-Alcen	France	iMitrace

Category 1: Low Energy Cyclotron - Internal Penning Ion Source - Review



BEST/ABT

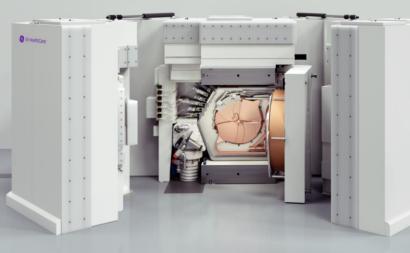
BG-75: Max. Current:

H⁺ 5 μA @ 7.5 MeV (internal target)

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle: H⁺
 - Source Bias: Grounded, RF Extraction from Dees
 - Source Max. Arc Current: 400 mA
 - Steady State Arc Power: 60 W
 - Arc Current/Voltage: 72 mA/832 V
 - Gas Flow: 4-5 s
 - Cathode Lifetime:
- 4-5 sccm
- Unreported

[1] http://www.bestabt.com/our-solutions/overview/

[2] Private Communication: Darrell McCroskey, Director - Manufacturing Services, BEST ABT Inc., Data by Email March 14, 2024.


5

- PETtrace[™] 800: Max. Extracted Current: H⁺ 160 μA @ 16.5 MeV; D⁺ 60 μA @ 8.4 MeV
- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle: H⁻, D⁻
 - Source Bias: Grounded, RF Extraction from Dees
 - Source Max. H⁻/D⁻ Current: Not Measured
 - Steady State Arc Power: ~100 W
 - Arc Current/Voltage: 300 mA/300V
 - Gas Flow: H⁻5 sccm; D⁻3.5 sccm
 - Cathode Lifetime:

35 mA.hrs on target, >219 hrs @ Max

<u>GE</u>

[2] Private Communication - Tomas Eriksson, Chief Engineer Cyclotrons, GE Healthcare - Photo by email February 12, 2024.
 [3] PT800 Cyclotron System Data Sheet rev6.pdf

^[1] Private Communication - Tomas Eriksson, Chief Engineer Cyclotrons, GE Healthcare - Data by email February 5, 2024.

MINItrace[™] Qilin: Max. Extracted Current: H⁺ 50 μA @ 9.6 MeV

 H^{-}

Not Measured

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H⁻ Current:
 - Steady State Arc Power:
 - Arc Current/Voltage:
 - Gas Flow:
 - Cathode Lifetime:

~125 W 500 mA/250V 5 sccm

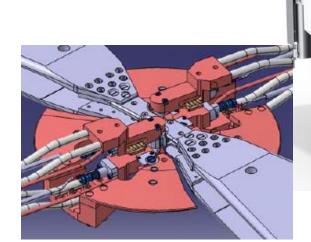
10 mA.hrs on target, >200 hrs @ Max

<u>GE</u>

[1] Private Communication - Tomas Eriksson, Chief Engineer Cyclotrons, GE Healthcare - Data by email February 5, 2024. [2] MT QILIN Cyclotron System Data Sheet rev4.pdf

MINItrace Oilin ion source

<u>IBA</u>


Grounded, RF Extraction from Dees

Cyclone®KIUBE 300 (Twin Source): Max. Extracted Current: H⁺ 300 μA @ 18 MeV

 H^{-}

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H[–] Current:
 - Steady State Arc Power:
 - Arc Current/Voltage:
 - Gas Flow:
 - Cathode Lifetime:

N/A 325W 1.25A/260V 2.5 -> 3.7 sccm ~600 hrs

Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email January 17, 2024.
 Private Communication – Benoit Nactergal, Director R&D; Eric Kral, Systems Engineer, IBA RadioPharma Solutions, Data received by email March 1, 2024.

8

<u>IBA</u>

- Cyclone18/9 (Twin Source): Max. Extracted Current: H⁺ 80 μA @ 18 MeV; D⁺ 40 μA @ 9 MeV
- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H[—] Current:
 - Steady State Arc Power:
 - Arc Current/Voltage:
 - Gas Flow:
 - Cathode Lifetime:

 $H^/D^-$

Grounded, RF Extraction from Dees

N/A

325W

1.25A/260V

2.5 -> 3.7 sccm

~600 hrs

9

Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email January 17, 2024.
 Private Communication – Benoit Nactergal, Director R&D; Eric Kral, Systems Engineer, IBA RadioPharma Solutions, Data received by email March 1, 2024.

 H^{-}

SAMYOUNG-UNITECH

- Kotron-13: Max. Extracted Current: H⁺ 120 μA @ 13 MeV
- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H⁻ Current:
 - Steady State Arc Power:
 - Arc Current/Voltage:
 - Gas Flow:
 - Cathode Lifetime:

Grounded, RF Dee Extraction Not Known Not Known 2.8 A/2.5 kV* Ignition 6.5 sccm >83 hours

Arc Hole

Slit

Anode

[#] http://samyoungunitech.com/doc/en/sb2_2.php

[#] B.C. Lee, H.J. Lee, J.H. Park, B.S. Moon, S.E. Kim, W. K. Lee, K.I. Jung, S. K. Chae, J.H. Kim, "Intensification of the KOTRON-13 Cyclotron by Optimizing the Ion Source", Journal of the Korean Physical Society, Vol. 57, No. 6, December 2010, pp. 1376-1380.

<u>Siemens</u>

Eclipse: Max. Extracted Current: H⁺ 150 μA @ 11 MeV (Dual 75 μA)

[1] Private Communication – Logan Williams, Cyclotron Engineer, Siemens Medical Solutions USA, Inc., Data provided in email January 29, 2024. [2] Private Communication – J. Bret Miller, CCS Engineering Manager, Siemens Medical Solutions USA, Inc., Data provided in email January 30, 2024.

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H⁻ Current:
 - Steady State Arc Power:

AIP Conference Proceedings, Vol. 2052, No. 1, P. 050016, AIP Publishing, 2018.

- Arc Current/Voltage:
- Gas Flow:
- Cathode Lifetime:

-15 kV, Puller Grounded, then RF Acceleration

1.5 mA DC (on Post Beam Stop)

244 W

 H^{-}

325 mA/750V

5 -> 9 sccm

>246 hrs

[3] D. Potkins, M. Dehnel, S. Melanson, T. Stewart, P. Jackle, J. Hinderer, N. Jones, L. Williams, "Improvements to Siemens Eclipse PET Cyclotron Penning Ion Source",

<u>SHI</u>

Grounded, RF Extraction from Dees

- **Cypris HM12:** Max. Extracted Current: H^+ 50 μ A @ 12 MeV; D^+ 30 μ A @ 6 MeV
- Cypris HM20: Max. Extracted Current: H⁺ 150 μA @ 20 MeV; D⁺ 50 μA @ 10 MeV

 $H^/D^-$

Not Provided

Not Provided

Not Provided

Not Provided

Not provided

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle:
 - Source Bias:
 - Source Max. H⁻ Current:
 - Steady State Arc Power:
 - Arc Current/Voltage:
 - Gas Flow:
 - Cathode Lifetime:

[1] CYRIC Annual Report 1998.

[2] https://www.shi.co.jp/industrial/en/product/medical/pet-radiopharmacy/cyclotron-hm12.html
[3] https://www.shi.co.jp/industrial/en/product/medical/pet-radiopharmacy/cyclotron-hm20.html
[4] H. Tsutsui et al, "Current Status of Sumitomo's Superconducting Cyclotron Development for Proton Therapy", Cyclotrons 2019 Conference, Cape Town, South Africa.

Developments

BEST/ABT BG-75

- Upgrade: H⁺ beam, 20 micro-amperes @ 9.5 MeV internal targets [1].
- GE MINItrace[™] Qilin the Penning ion source slit location in relation to the puller opening is remotely adjustable [2].

► GE PETtrace[™]

- In-the-field cathode lifetime ranges 16-26 weeks at 55-60 hrs/week (880 hrs 1560 hrs) [3].
- Cathodes working surface at changeout are normally flat with mirror finish unless there is contamination such as an air leak [3].
- Typical reason for changeout is reduced output due to slit erosion on Penning anode chamber (known as a "chimney") [3].
- Cathodes at some sites are re-used for 2-3 chimney change-outs. Insulators normally reused unless broken from over-tightening [3].

[1] Private Communication: Vasile Sabaiduc, Director of Cyclotron Operations, BEST Cyclotron Systems, Data by Email February 13, 2024.

^[2] Private Communication - Tomas Eriksson, Chief Engineer Cyclotrons, GE Healthcare - Data by email March 5, 2024.

^[3] Private Communication - Marty Magerl, Director of Cyclotron Services, North America SOFIE - Data by email February 16, 2024.

Developments

Siemens Eclipse

- <u>Recent developments [1]</u>:
 - Improved vacuum integrity at the hydrogen line & ion source itself. Improvements in serviceability.
- <u>Future developments [1]</u>:
 - The focus is on improved heat transfer at the upper cathode.
 - Mitigate a glow discharge phenomenon in the hydrogen feed line (at times).
 - Long-term goal is still to test for increased, persistent ion production using caesium.
- Caesium getters. SAES Group: 2.7mg, Ø1mm x 0.8mm pills (0.6 mg Cs). Released from Cs-Al-Zr salt >550 C [2]

[2]

2

14

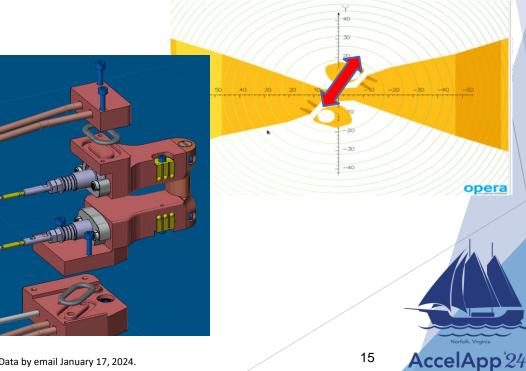
	Arc I	Arc Power	Beam @ Post	Beam @ 11 MeV
Baseline	0.27 A	174 W	740 µA	128 µA
Cs Pill in Lower Cathode	0.27 A	116 W	925 µA	155 μΑ

[1] Private Communication – Logan Williams, Cyclotron Engineer, Siemens Medical Solutions USA, Inc., Data provided in email January 29, 2024.

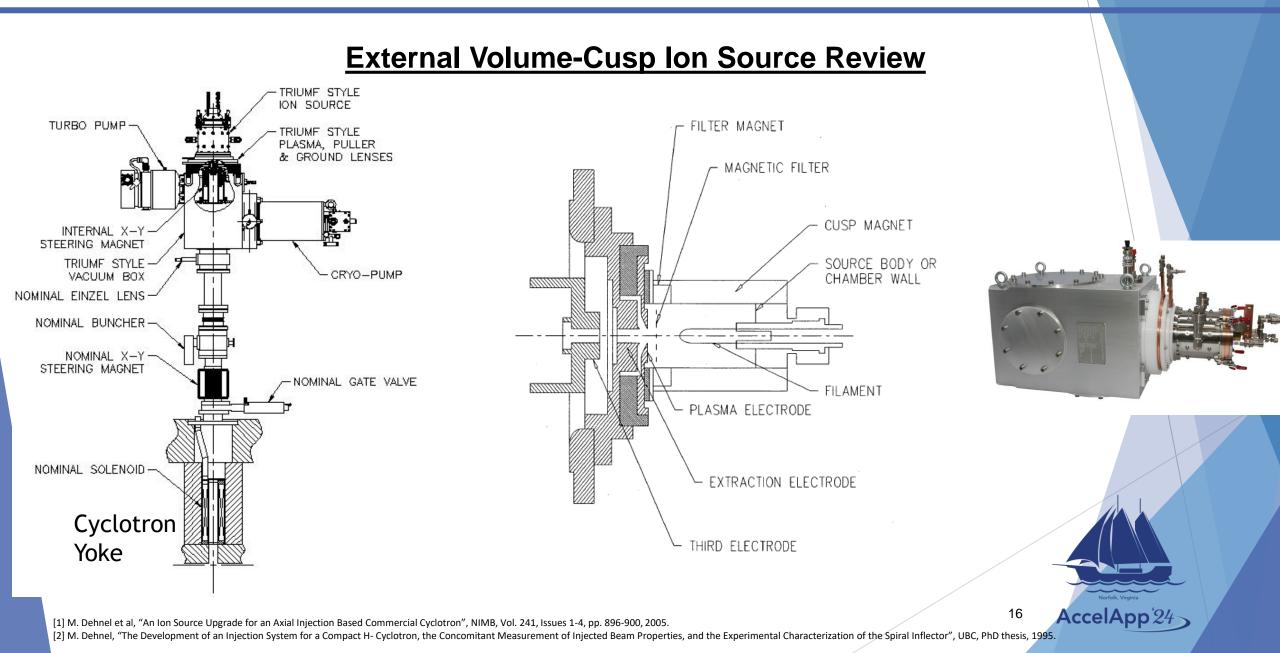
[2] D. Potkins, M. Dehnel, S. Melanson, T. Stewart, P. Jackle, J. Hinderer, N. Jones, L. Williams, "Improvements to Siemens Eclipse PET Cyclotron Penning Ion Source", AIP Conference Proceedings, Vol. 2052, No. 1, P. 050016, AIP Publishing, 2018.

Category 1: Low Energy Cyclotron - Internal Penning Ion Source

Developments


IBA [1]

- Twin Ion Sources:
 - Switching to second source is automated.
 - Global source lifetime significantly increased.
- Kiube Motorized Source:
 - Azimuthal/Radial .
 - Global source lifetime significantly increased.
- Kiube Easy Access:
 - Source body/cathodes, maintenance.
 - 300 μ A extracted at 18 MeV, H⁺



Category 1: Low Energy Cyclotron – External Volume-Cusp Ion Source

Category 1: Low Energy Cyclotron – External Volume-Cusp Ion Source – Present Status

BEST

B15P: Max. Extracted Current: H⁺ 400 μA @ 15 MeV

- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle: H
 - Source Bias: -25 kV
 - Source Max. H⁻Current: 5 mA
 - Steady State Arc Power: 2.8 kW
 - Arc Current/Voltage: 20 A/140 V
 - Gas Flow: 12 sccm
 - Filament Lifetime:
- >500 hrs

[1] Private Communication: Vasile Sabaiduc, Director of Cyclotron Operations, BEST Cyclotron Systems, Data by Email February 13, 2024.

Category 1: Low Energy Cyclotron – External Volume-Cusp Ion Source – Present Status

<u>ACSI</u>

- TR-19, TR-19/9: Max. Extracted Current: H⁺ 400 μA @ 19 MeV; D⁺ 75 μA @ 9 MeV
- Cyclotron Parameters for Max. Extracted Current
 - Accelerated Particle: H⁻, D⁻
 - Source Bias: -28 kV, -13 kV
 - Source Max. H⁻Current: 5 mA, 2.6 mA
 - Steady State Arc Power: 1.5 kW
 - Arc Current/Voltage: 15 A/100 V
 - Gas Flow:
 - Filament Lifetime:

10 sccm, 5 sccm

>1500 hrs

Private Communication: Russell Watt, Chief Cyclotron Engineer, ACSI, Data by Email January 19, 2024.
 https://advancedcyclotron.com/our-cyclotrons/tr19/

18

Category 1: Low Energy Cyclotron – External Volume-Cusp Ion Source – Present Status

PMB-Alcen

- iMiTRACE: Max. Extracted Current: H⁺ 50 μA @ 12 MeV
- Cyclotron* Parameters for Max. Extracted Current
 - Accelerated Particle: H
 - Source Bias: -25 kV
 - Source Max. H[–]Current: 1.5 mA
 - Steady State Arc Power: 2 kW
 - Arc Current/Voltage: 20 A/100 V
 - Gas Flow: 10 sccm
 - Filament Lifetime: >800 hrs

*Super-Conducting

[1] Private Communication: Gaëtan Carreno, Cyclotron Engineer, PMB-Alcen, Data by Email January 19, 2024.

Developments

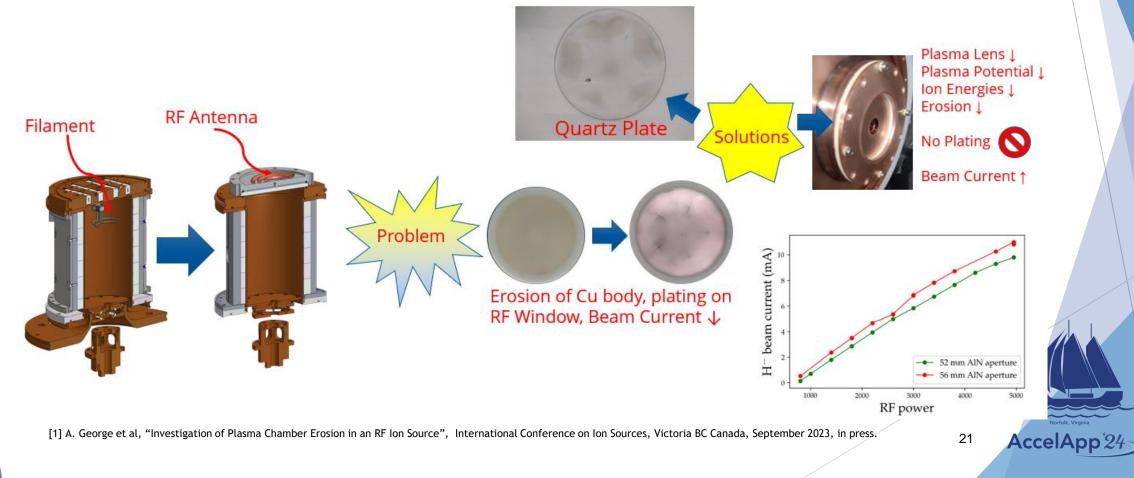
PMB-Alcen, iMiTRACE [1]

- Enameling of ceramic parts for easier cleaning.
- Feasibility study on moving to simpler, less expensive Penning System.

ACSI TR19 [2]

- Converted from cryo-pumps to Turbo pumps many years ago (avoids cryo-regeneration).
- Filament failure occurs when filament heating current (not arc current) is ~90A, so filament replacements are scheduled when filament heating current ~120A.
- Source cleaning of only major flakes with lint free cloth. Retain sputtered tantalum surface. If source inner chamber cleaned to copper surface, then it can take a few days to get current production back up to normal.
- Keep source running at low current to source beam stop between runs. Do not "turn off" source as then thermal cycling of the filament will reduce lifetime.

Private Communication: Gaëtan Carreno, Cyclotron Engineer, PMB-Alcen, Data by Email March 7, 2024.
 Private Communication: Leonard Popa, Senior Principal Product Engineer, Cardinal Health, March 3, 2024.



20

Developments

D-Pace RF Ion Source [1] PostDoc with TRIUMF; hybrid TRIUMF & U. Jyväskylä licenses:

- Aim is to avoid filament changeouts, maintenance interval 1-2 years.

Category 2: Medium Energy Cyclotron – External Volume-Cusp/ECR/Penning – Present Status

PRESENT STATUS

External Volume-Cusp Ion Source

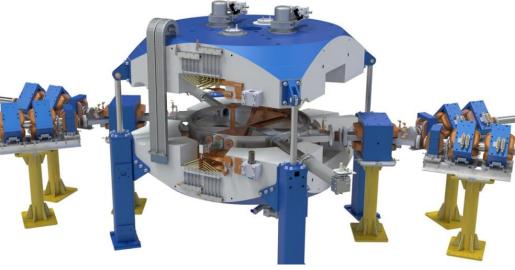
- ACSI	Canada	TR-24, TR-FLEX, TR-30, TR-30/15
- BEST	Canada	B25P, B35P
- IBA	Belgium	C30, C30-HC

External Volume-Cusp Ion Source & ECR

Belgium	C30XP
	Belgium

External Volume-Cusp Ion Source & Penning

- SHI


Japan

MP-30

<u>ACSI</u>

	Particle	Extraction	Max IS	IS Bias	Arc Power	Arc I/V	Gas Flow	Filament Lifetime	
TR-24	$H^{-} \rightarrow H^{+}$	1000 μA/24 MeV	15 mA	-28 kV	1.5 kW	15A/100V	8 sccm	1500 hours	
TR-FLEX	$H^{-} \rightarrow H^{+}$	1000 μA/30 MeV	15 mA	-28 kV	1.5 kW	15A/100V	8 sccm	1500 hours	
TR-30	$H^{-} \rightarrow H^{+}$	1800 μA/30 MeV	15 mA	-28 kV	3.5 kW	35A/100V	12 sccm	1500 hours	
TR-30/15	$D^{-} \rightarrow D^{+}$	150 μA/15 MeV	5 mA	-13 kV	2.0 kW	20A/100V	7 sccm	1500 hours	

[1] Private Communication: Russell Watt, Chief Cyclotron Engineer, ACSI, Data by Email January 19, 2024.
 [2] https://advancedcyclotron.com/our-cyclotrons/tr30/

AccelApp²⁴

BEST

24

AccelApp 2

[1] Private Communication: Vasile Sabaiduc, Director of Cyclotron Operations, BEST Cyclotron Systems, Data by Email February 13, 2024.

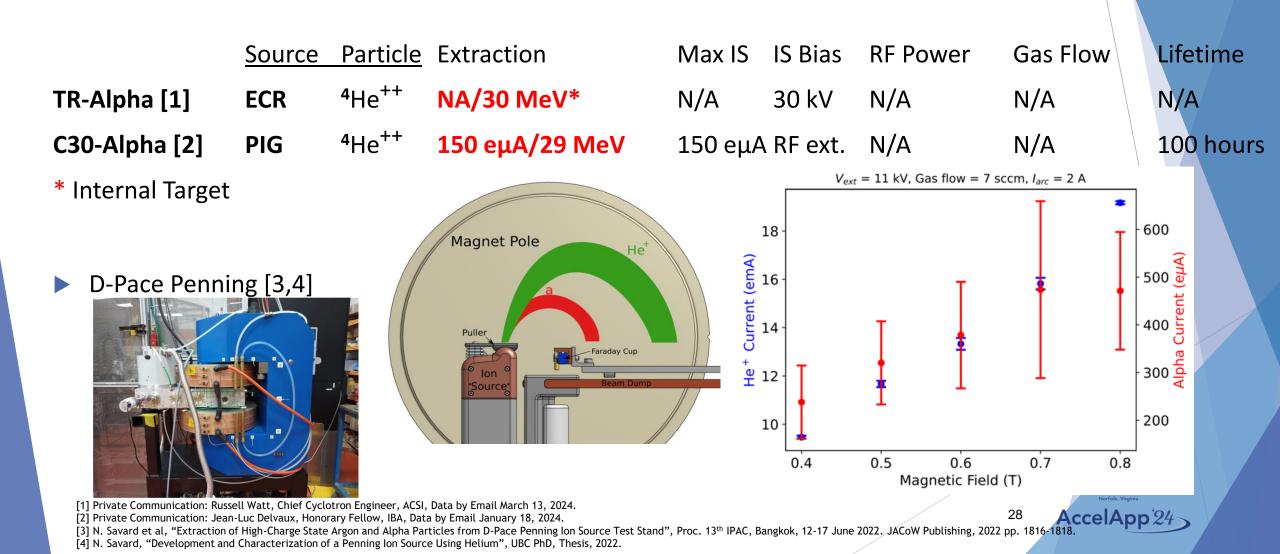
IBA Particle Extraction Max IS IS Bias Arc Power Arc I/V **Filament Lifetime** Gas Flow $H^- \rightarrow H^+$ **750 µA/30 MeV** 5 mA -31 kV 2.0 kW 25A/80V **C30** 12 sccm 500 hours $H^- \rightarrow H^+$ **1200 µA/30 MeV** 10 mA -31 kV 2.5 kW **C30-HC** 20A/120V 12 sccm 800 hours $H^- \rightarrow H^+$ **1200 µA/30 MeV** 10 mA -40 kV 2.5 kW **IKON** 25A/100V 12 sccm 800 hours

Private Communication: Jean-Luc Delvaux, Honorary Fellow, IBA, Data by Email January 18, 2024.
 Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email March 4, 2024.

²⁵ AccelApp²⁴

IBA Particle Extraction Max IS IS Bias Arc Power Arc I/V Gas Flow **Filament Lifetime** $H^- \rightarrow H^+$ **350 µA/30 MeV** 5 mA -40 kV 2.0 kW 25A/80V C30xp 12 sccm 500 hours $D^{-} \rightarrow D^{+}$ **100 µA/15 MeV** 1.2 mA -20 kV 2.5 kW **C30xp** 15A/167V 12 sccm 500 hours ⁴He⁺⁺ **50 μAe/30 MeV** 1.2 mAe +20 kV 0.5 kW RF C30xp* N/A 12 sccm 15000 hours * ECR for ⁴He⁺⁺

[1] Private Communication: Jean-Luc Delvaux, Honorary Fellow, IBA, Data by Email January 18, 2024.
 [2] Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email March 4, 2024.



²⁶ AccelApp²⁴

<u>SHI</u>

	Particle	Extraction	Max IS	IS Bias	Arc Power	Arc I/V	Gas Flow	Filament Lifetime
MP-30	H [−] →H ⁺	400 µA/30 MeV	N/A	-30 kV	N/A	N/A	N/A	N/A
MP-30	$D^{-} \rightarrow D^{+}$	100 μA/15 MeV	N/A	-16 kV	N/A	N/A	N/A	N/A
MP-30*	⁴ He ⁺⁺	30 µAe/32 MeV	N/A	+16 kV	N/A	N/A	N/A	N/A
	u et al, "Sumitomo M	ulti-Purpose Cyclotron MP-30", Proceed pan, August 1-3, 2017, Sapporo, Japan.	ings of the 14 th Annu	al Meeting	α 32Me Proton 30Me Proton 15Me Electrostati For He2+ E	Beam Transport Foil Stripper for H-/D- Extraction	n	Nortole, Vergina CccelApp '24

Developments

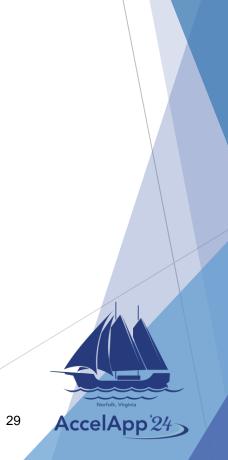
Category 3: <u>High Energy Cyclotron</u> – External Volume-Cusp/ECR/Penning – Present Status

PRESENT STATUS

External Volume-Cusp Ion Source

- BEST	Canada	B70P	
- IBA	Belgium	C70P	

External Volume-Cusp & ECR Ion Source


- IBA Belgium C70XP

Internal Penning Ion Source

- Scanditronix

Sweden

MC50

BEST

Particle Extraction Max IS IS Bias Arc Power Arc I/V Gas Flow Filament Lifetime **B70P** $H^- \rightarrow H^+$ 1000 μ A/70 MeV 12 mA -40 kV 4.0 kW 28A/143V 12 sccm 500 hours

30

AccelApp²⁴

[1] Private Communication: Vasile Sabaiduc, Director of Cyclotron Operations, BEST Cyclotron Systems, Data by Email February 13, 2024.

Private Communication: Jean-Luc Delvaux, Honorary Fellow, IBA, Data by Email January 18, 2024.
 <u>https://hm-offload.s3.eu-west-3.amazonaws.com/iba/2023/04/cyclone_70_web.pdf</u>
 Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email March 4, 2024.

cusp, filament-powered H⁻ source

10 mA.

AccelApp²4

IBA

	Particle	Extraction	Max IS	IS Bias	Arc Power	Arc I/V	Gas Flow	Filament Lifetime
С70хр	H [−] →H ⁺	1000*µA/70MeV	10 mA	-40 kV	2.0 kW	25A/80V	12 sccm	500 hours
С70хр	$D^{-} \rightarrow D^{+}$	100 µA/35 MeV	1.2 mA	-20 kV	2.5 kW	15A/167V	12 sccm	500 hours
С70хр	⁴ He ⁺⁺	70 eµA/70 MeV	1.2 mAe	+20 kV	0.5 kW RF*	N/A	12 sccm	15000 hours
С70ХР	H_2^+	50 μA/15 MeV	1 mAe	+20 kV	0.5 kW RF*	N/A	12 sccm	15000 hours
* Did 750	μΑ 35-70	MeV at Arronax.	Volum	e-Cusp ~			EC	R

AccelApp²⁴

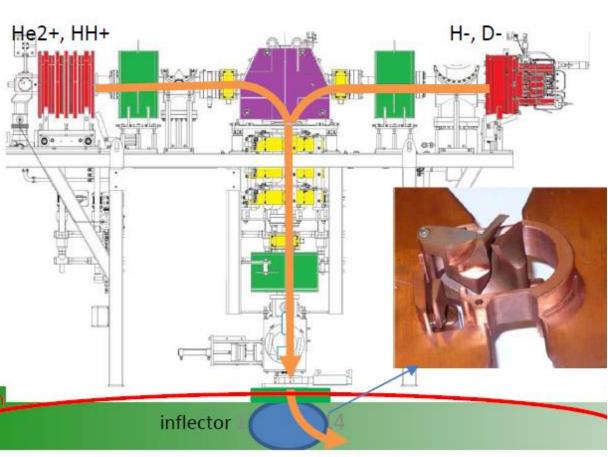
32

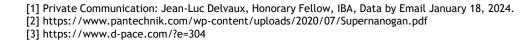
Private Communication: Jean-Luc Delvaux, Honorary Fellow, IBA, Data by Email January 18, 2024.
 Private Communication - Jean-Michel Geets, IntegraLab Business Developer – IBA Fellow, IBA RadioPharma Solutions – Data by email March 4, 2024.

Scanditronix (UWMCF)

	Particle	Extraction	Max IS	IS Bias	ArcPower	Arc I/V	Gas Flow	Cathode Lifetime
			(r17 cm)					(buttons)
MC50	H^+	50 μA/50.5 MeV	70 µA	Ground	106 W	85mA/1.25kV	3 sccm	>120 hours
MC50	⁴ He ⁺⁺	70μAe/47.3 MeV	80 µA	Ground	750 W	0.5A/1.5 kV	3 sccm	4-8 hours
MC50	D^+	35 μA/23.8 MeV	N/A	Ground	45 W	50mA/0.9kV	3.7 sccm	>120 hours
MC50	³ He ⁺⁺	2 μAe/35.7 MeV	N/A	Ground	280 W	0.2A/1.4kV	3.5 sccm	4-8 hours


[1] Private Communication: Marissa Kranz, Facility Director, University of Washington Medical Cyclotron Facility, Data by Email February 29, 2024.
 [2] Private Communication: Marissa Kranz, Facility Director, University of Washington Medical Cyclotron Facility, Photo by Email March 13, 2024.


³³ AccelApp²/₂₄


Category 3: <u>High Energy Cyclotron</u> – External Volume-Cusp/ECR/Penning

Developments

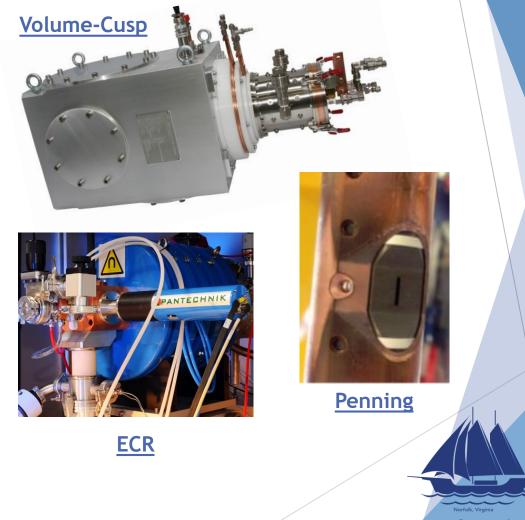
▶ IBA C70P [1]



AccelApp²⁴

Developments

Scanditronix MC50 UWMCF [1]


- 2 Cu pieces form two chimneys. Replace every 150-200 hrs. Cathode material shorts.
- Chimney 1: Purple Button Cathode LaB₆ used for proton and deuteron source, 120+ hrs
- Chimney 2: Grey Button Cathode HfC used for Alpha and He-3, 4-8 hours
- Molybdenum Penning Exit slits known as windows were Molybdenum, but are now tungsten, for much reduced slit widening due to erosion.
 Especially important in Chimney 2 with the more massive particles.

H⁻, D⁻ & He⁺⁺ Source Developments for Medical Isotope Production Cyclotrons

Accelerator Development and Technology (ADT-1) Tuesday, March 19, 2024.

QUESTIONS?

AccelApp2

Monday, March 18, 2024

 [1] https://www.d-pace.com/?e=304
 [2] D. Potkins, M. Dehnel, S. Melanson, T. Stewart, P.Jackle, J. Hinderer, N. Jones, L. Williams, "Improvements to Siemens Eclipse PET Cyclotron Penning Ion Source", AIP Conference Proceedings, Vol. 2052, No. 1, P. 050016, AIP Publishing, 2018.
 [3] https://www.pantechnik.com/wp-content/uploads/2020/07/Supernanogan.pdf