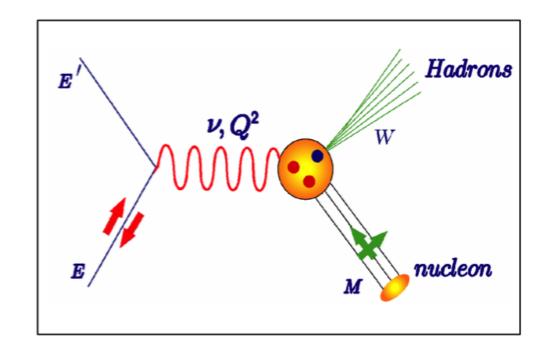
# Polarized Proton DIS with SBS/BB at 12 GeV

**SBS Collaboration Meeting** 

Bill Henry


July 18th, 2023

#### **DIS Structure Functions**

#### Unpolarized cross section:

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{\alpha^{2}}{4 E^{2} \sin^{4} \frac{\theta}{2}} \left( \frac{2}{M} F_{1}(x, Q^{2}) \sin^{2} \frac{\theta}{2} + \frac{1}{\nu} F_{2}(x, Q^{2}) \cos^{2} \frac{\theta}{2} \right)$$

• Unpolarized structure functions  $\mathbf{F}_1$  and  $\mathbf{F}_2$  contain information about the momentum structure of the target nucleon.



#### Polarized cross section:

$$\frac{d^2\sigma}{dE^{\,\prime}d\Omega}(\rlap{\ }\rlap{\ }\rlap{\ } \uparrow - \uparrow \uparrow \uparrow) = \frac{4\,\alpha^2E^{\,\prime}}{M\,Q^2\nu E}[(E + E^{\,\prime}\cos\theta)g_1(x,Q^2) - \frac{Q^2}{\nu}g_2(x,Q^2)] = \Delta\,\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta E'^{2}}{MQ^{2}v^{2}E}[vg_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})] = \Delta\sigma_{\perp}$$

 Polarized structure functions g<sub>1</sub> and g<sub>2</sub> encode information about the spin structure of the target nucleon.  $Q^2$  = 4-momentum transfer squared of the virtual photon

v = E-E' = energy transfer

 $\theta$  = scattering angle

x = Fraction of nucleon momentum carried by the struck quark

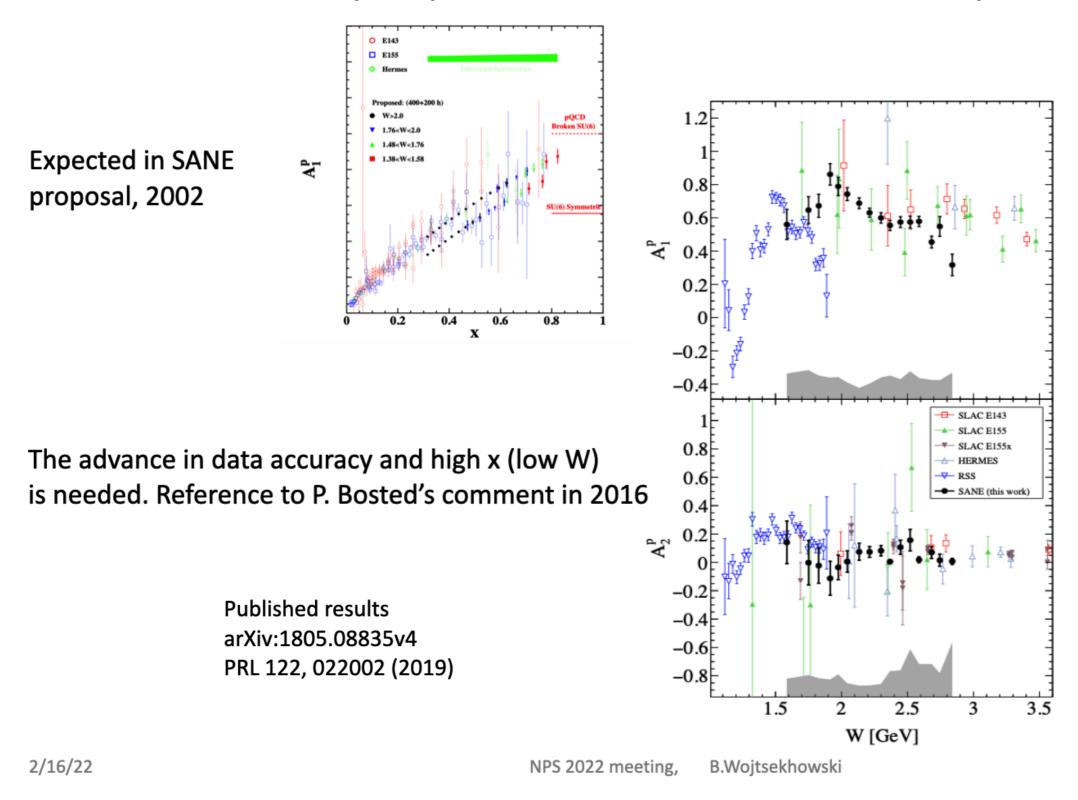
# Polarized Structure Function and Asymmetries

#### **Target Transversly Polarized**

$$A_{\perp} \equiv \frac{\sigma^{\to \uparrow} - \sigma^{\leftarrow \downarrow}}{\sigma^{\to \uparrow} + \sigma^{\leftarrow \downarrow}} = \frac{1}{2} \frac{(\sigma^{\to \uparrow} - \sigma^{\leftarrow \downarrow})}{\frac{d^2 \sigma^{Unpol}}{d\Omega dE'}}$$

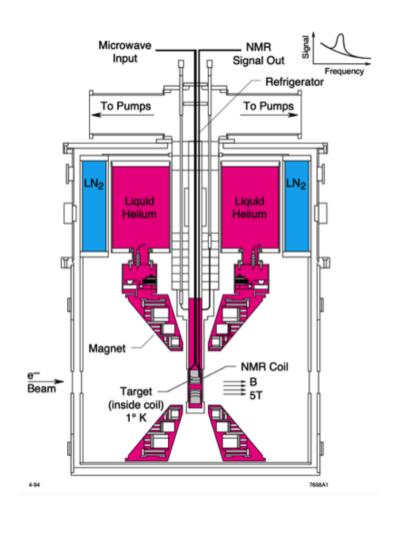
#### **Target Longitudinally Polarized**

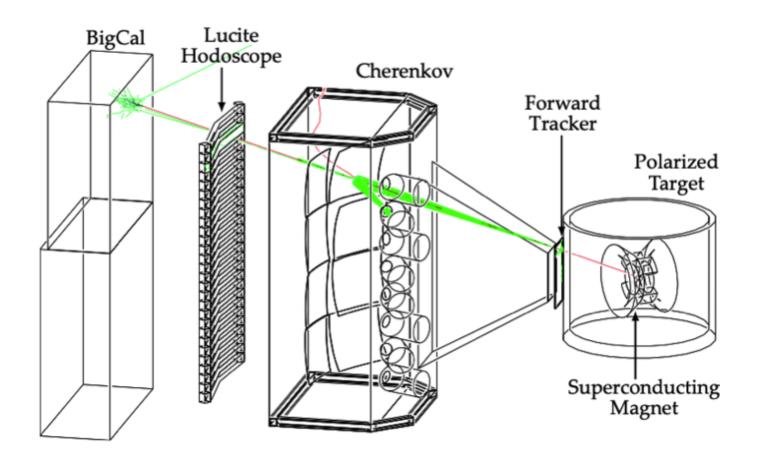
$$A_{\parallel} \equiv \frac{\sigma^{\rightarrow \Rightarrow} - \sigma^{\leftarrow \Rightarrow}}{\sigma^{\rightarrow \Rightarrow} + \sigma^{\leftarrow \Rightarrow}} = \frac{1}{2} \frac{(\sigma^{\rightarrow \Rightarrow} - \sigma^{\leftarrow \Rightarrow})}{\frac{d^2 \sigma^{Unpol}}{d\Omega dE'}}$$


#### Structure Functions in terms of the observables

$$g_1 = \frac{M_n Q^2}{4\alpha^2} \frac{2y}{(1-y)(2-y)} \frac{d^2 \sigma^{Unpol}}{d\Omega dE'} \left[ A_{\parallel} + \tan\left(\frac{\theta}{2}\right) A_{\perp} \right]$$

$$g_{2} = \frac{M_{n}Q^{2}}{4\alpha^{2}} \frac{2y}{(1-y)(2-y)} \frac{d^{2}\sigma^{Unpol}}{d\Omega dE'} \left[ -A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$


# SANE Experiment


#### A1p/A2p was done with a 5.9 GeV beam by SANE

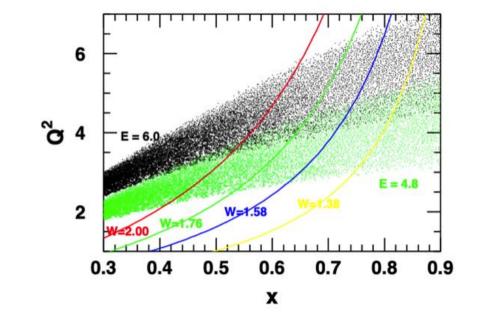


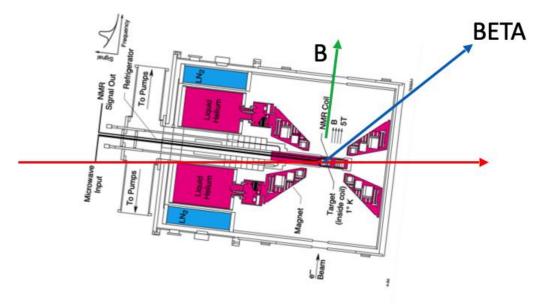
# **SANE Experiment**

#### Apparatus in SANE experiment






# **SANE Experiment**


#### Kinematics in DIS experiment with polarized target

| $E_{beam}$ | I    | $	heta_N$ | $	heta_e$ | Time |
|------------|------|-----------|-----------|------|
| (GeV)      | (nA) | (°)       | (°)       | (h)  |
| 6.0        | 85   | 180       | 40        | 325  |
| 6.0        | 85   | 80        | 40        | 75   |
| 4.8        | 85   | 180       | 40        | 170  |
| 4.8        | 85   | 80        | 40        | 30   |
| 2.4        | 1000 | 26        | 58        | 50   |

Table 2: Resolutions of SANE for E=4.8 and 6.0 GeV and  $\theta_{central}=40^{\circ}$ . The momenta shown roughly correspond to the lowest and highest x for DIS and the highest x for the second resonance region.

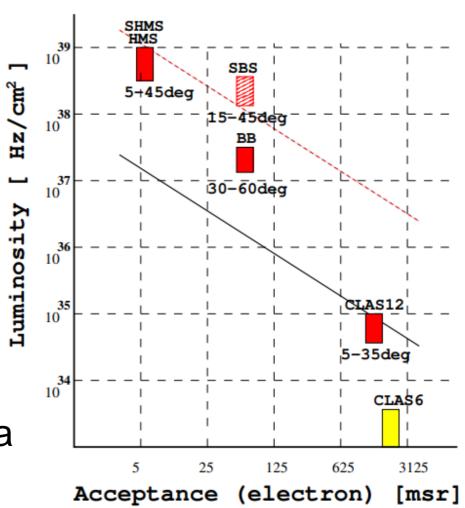
| E'           | x    | W     | $\delta\theta$ | $\delta E'$ | $\delta x$ | $\delta Q^2$           | $\delta W$ |  |  |  |
|--------------|------|-------|----------------|-------------|------------|------------------------|------------|--|--|--|
| (GeV)        |      | (GeV) | (mrad)         | (GeV)       |            | $(\mathrm{GeV^2/c^2})$ | (GeV)      |  |  |  |
| E = 6.0  GeV |      |       |                |             |            |                        |            |  |  |  |
| 1.0          | 0.30 | 2.73  | 10.1           | 0.050       | 0.024      | 0.160                  | 0.045      |  |  |  |
| 1.7          | 0.59 | 2.04  | 4.5            | 0.065       | 0.035      | 0.196                  | 0.076      |  |  |  |
| 2.2          | 0.87 | 1.35  | 2.9            | 0.074       | 0.048      | 0.214                  | 0.130      |  |  |  |
| E = 4.8  GeV |      |       |                |             |            |                        |            |  |  |  |
| 0.8          | 0.24 | 2.57  | 17.0           | 0.045       | 0.028      | 0.131                  | 0.039      |  |  |  |
| 1.4          | 0.49 | 2.03  | 5.9            | 0.059       | 0.034      | 0.143                  | 0.061      |  |  |  |
| 1.9          | 0.78 | 1.43  | 3.9            | 0.069       | 0.050      | 0.162                  | 0.100      |  |  |  |





2/16/22

NPS 2022 meeting,

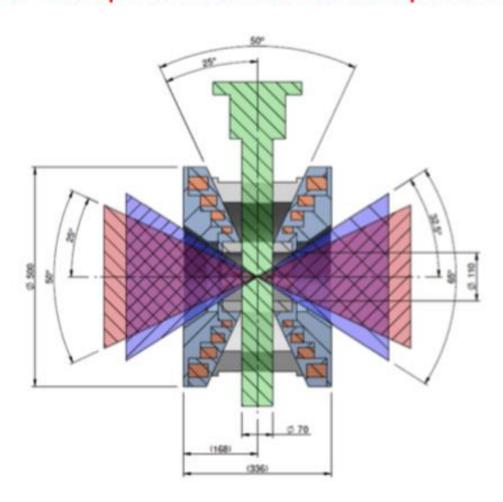

B.Wojtsekhowski

4

#### Polarized Proton DIS with SBS/BB

# Motivation for polarized NH3 target in Hall C using SBS and BB

- Larger Acceptance than SHMS/HMS
- Higher Luminosity than possible in Hall B
- New Magnet with large opening angle
- A<sub>LL</sub> style symmetric setup
- Similar to 6 GeV SANE, but in 12 GeV era




# Target Magnet

A new magnet with improved acceptance for transverse polarization was procured for experiments in Hall C. Compared to the original Hall B and C magnets:

±35° acceptance for longitudinal polarization (30% smaller)

±25° acceptance for transverse polarization (67% larger)



Cross-section through the magnet showing the beam and cold finger access diameters (in mm) and :

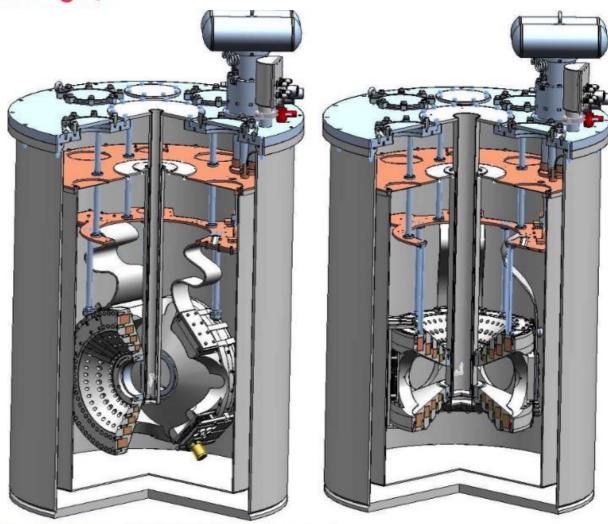
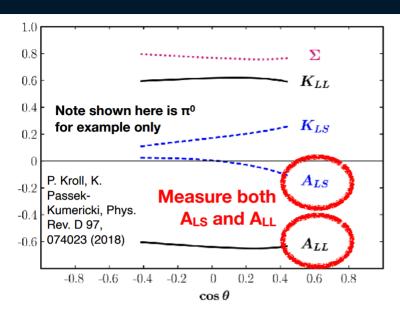
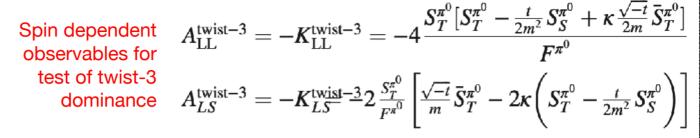





Figure 7: Cut-away of the 2 orientations for the magnet.

# Similar Concept as A<sub>LL</sub>

#### Plan To Now Measure ALL and ALS





 $A_{LL}$  = helicity of incoming photon and longitudinal polarisation of initial nucleon  $A_{LS}$  = helicity of incoming photon and sideway polarisation of initial nucleon





• Double productivity by accessing ALS simultaneously without target change

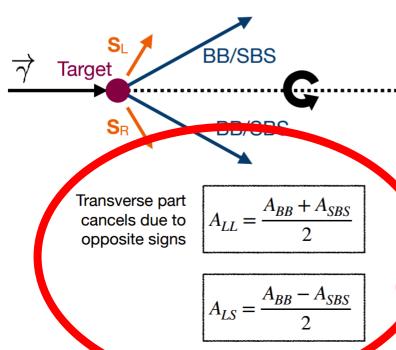


Target polarised at 60° to beam

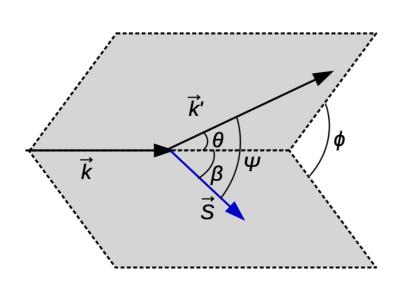
Cannot easily change target to flip transverse polarisation

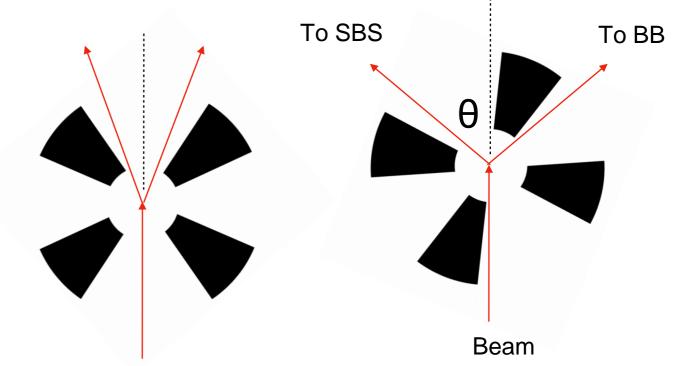
But have BB/SBS either side of beam line

• Measure p and π- in both DD and CDO arms


• Flip of transverse polarisation (S) around beam line equivalent to measuring in either professions.

Longitudinal component stays same (not affected by imaginary rotation)


Raw asymmetry has contributions from A<sub>LL</sub> and A<sub>LS</sub>


Asymmetry observed by BB compared to SBS differs by opposite signs of A<sub>LS</sub> contributions only

• ALL will be average and ALS will be difference in BB/SBS asymmetries



### Advantage of a symmetric setup





where  $\theta$  is the electron scattering angle,  $\phi$  is the azimuthal angle,  $\beta$  is the angle between the incident electron momentum and nucleon spin, and  $\psi$  is the angle between the scattered electron and the nucleon spin, so that,

If 
$$\theta_{SBS} = -\theta_{BB}$$
, then

$$A_{BB} = DP_{targ}P_{beam}(Cos(\beta)A_{||} + Sin(\beta)A_{\perp})$$

$$A_{SBS} = DP_{targ}P_{beam}(Cos(\beta)A_{||} - Sin(\beta)A_{\perp})$$

$$A_{\perp} = (A_{SBS} + A_{BB})/2$$

# Summary/Outlook

- Concept introduced for using SBS and BB in Hall C to measure the proton spin structure functions using a polarized NH3 target
- A symmetric setup of SBS and BB allows simultaneous measurement of A\_perp and A\_parallel
- Larger acceptance than SHMS/HMS and higher luminosity than Hall B provides large Figure of Merit
- Proposal at next year PAC