PR12-22-005

A Search for a Nonzero Strange Form Factor of the Proton at $2.5(\mathrm{GeV} / \mathrm{c})^{2}$

R.Beminiwattha, S.P.Wells, N.Simicevic, C. Palatchi, K.Paschke, S.Ali, X.Bai, G.Cates, R.Lindgren, N.Liyanage, V.Nelyubin, X.Zheng, B.Wojtsekhowski, S.Barcus, A.Camsonne, R.Carlini, S.Covrig Dusa, P.Degtiarenko, D.Gaskell, O.Hansen, D.Higinbotham, D.Flay, D.Jones, M.Jones, C.Keppel, D.Meekins, R.Michaels, B.Raydo, G.Smith, H.Szumila-Vance, A.S.Tadepalli, T.Horn, E.Cisbani, E.King, J.Napolitano, P.M.King, P.A.Souder, D.Hamilton, O.Jevons, R.Montgomery, P.Markowitz, E.Brash, P.Monaghan, T.Hobbs, G.Miller, J.Lichtenstadt, T.Kolar, E.Piasetzky, G.Ron, D.Armstrong, T.Averett, S.Mayilyan, H.Mkrtchyan, A.Mkrtchyan, A.Shahinyan, V.Tadevosyan, H.Voskanyan, W.Tireman, P.Datta, E.Fuchey, A.J.R.Puckett, S.Seeds, C.Munoz-Camacho

LaTech, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, Glascow, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W\&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Charge symmetry and the nucleon form factors

Charge Symmetry

$$
\begin{aligned}
& G_{E}^{p}=\frac{2}{3} G_{E}^{u, p}-\frac{1}{2} G_{E}^{d, p} \\
& G_{E}^{n}=\frac{2}{3} G_{E}^{u, n}-\frac{1}{3} G_{E}^{d, n}
\end{aligned}
$$

$$
G_{E}^{p}=\frac{2}{3} G_{E}^{u, p}-\frac{1}{3} G_{E}^{d, p}-\frac{1}{3} G_{E}^{s}
$$

$$
G_{E}^{n}=\frac{2}{3} G_{E}^{u, n}-\frac{1}{3} G_{E}^{d, n}-\frac{1}{3} G_{E}^{s}
$$

Charge symmetry is assumed for the form factors, $G_{E}^{u, p}=G_{E}^{d, n}$, etc. and used to find the flavor separated form-factors, measuring $G_{E, M}^{p, n}$ to find $G_{E, M}^{u, d}$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the " 2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

$$
G_{E}^{p, Z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E}^{u, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{d, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{s}
$$

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$
\begin{aligned}
\delta G_{E}^{u} & \equiv G_{E}^{u, p}-G_{E}^{d, n} \\
\delta G_{E}^{d} & \equiv G_{E}^{d, p}-G_{E}^{u, n}
\end{aligned}
$$

So, more generally: this experiment tests the assumption of charge symmetry
which is crucial to the flavor decomposition of the form factors

Strangeness form factors

Polarized electron beam elastic e-p scattering

$$
\begin{gathered}
A_{P V}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \cdot\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}-\frac{\left.\epsilon G_{E}^{p} \overline{G_{E}^{s}}\right)+\tau G_{M}^{p} \bar{G} G_{M}^{s}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right. \\
\left.+\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) \frac{G_{M}^{p} G_{A}^{Z p}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right]
\end{gathered}
$$

$$
A_{\text {PV }}=150 \mathrm{ppm} \text { at } \theta=15.5^{\circ}, \mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}(\text { for } \mathrm{sFF}=0)
$$

$$
\mathrm{A}_{\mathrm{PV}}=(-226 \mathrm{ppm}) *\left[0.075+0.542-6.43^{*}\left(G_{M}^{s}+0.32 G_{E}^{s}\right)+0.038\right]
$$

$\mathrm{Q}_{w} \quad$ EMFF

Proton strange form factors via parity violating elastic electron scattering

Strange form factors consistent with zero at low Q^{2}, but do not rule out non-zero values at higher Q^{2}, especially for magnetic form factor which is more accessible at higher Q^{2}

Strange form-factor predictions

T.Hobbs \& J.Miller, 2018

Follows work from Phys.Rev.C 91 (2015) 3, 035205
(LFWF to tie DIS and elastic measurements in a simple model)

Conclusion: sFF small (but non-zero) at low Q², but quite reasonable to think they may grow relatively large at large Q^{2}

$$
\mathrm{G}_{\mathrm{D}}=0.0477 \text { at } 2.5 \mathrm{GeV}^{2}
$$

uncertainty here ranges from ($0.036,-0.051$)
$\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{D}} \sim 1$ is not excluded

Strange form-factors on the lattice

Q^{2} dependence of $\mathrm{F}_{2} / \mathrm{F}_{1}$

pQCD prediction for large Q^{2} : scaling

$$
S \rightarrow Q^{2} F_{2} / F_{1}
$$

The lines for individual flavor are straight: $F_{2} / F_{1} \sim$ constant

Q^{2} dependence of $\mathrm{Q}^{4} \mathrm{~F}_{1}$

$$
\begin{aligned}
& F_{1 p}=e_{u} F_{1}^{u}+e_{d} F_{1}^{d}+e_{s} F_{1}^{s} \\
& F_{1 n}=e_{u} F_{1}^{d}+e_{d} F_{1}^{u}+e_{s} F_{1}^{s}
\end{aligned}
$$

$$
F_{1}^{u}=2 F_{1 p}+F_{1 n}-F_{1}^{s} \quad F_{1}^{d}=2 F_{1 n}+F_{1 p}-F_{1}^{s}
$$

Assuming $\delta G_{E, M}^{s} \sim G_{D} \sim 0.048 \rightarrow \delta\left(Q^{4} F_{1}^{u}\right) \sim \pm 0.17$

$$
F_{1}=\frac{G_{E}+\tau G_{M}}{1+\tau}=\frac{G_{E}+0.7 G_{M}}{1.7} \sim \frac{G_{D}}{1.7}
$$

- Form factors are a crucial constraint on GPDs, and the flavor content must be understood
-Whatever future data informs GPDs and the nucleon femtography project, form-factors will remain an important constraint
-The quark flavor content of the form-factor must be known for this purpose!

PVES "counting" experiments

Mainz A4

Total energy of electron

Time of flight of recoil proton

PVDIS-6

Calorimetry + Cerenkov PID

Experimental concept

- Elastic kinematics between electron and proton
- Full azimuthal coverage, $\sim 42 \mathrm{msr}$
- High resolution calorimeter for electron arm
- Angular correlation e-p
- Scattered electron at 15.5 degrees
- Scattered proton at 42.4 degrees
- 6.6 GeV beam
- 10 cm LH 2 target, $65 \mu \mathrm{~A}, \mathcal{L}=1.7 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}$

Experimental concept

Streaming readout, recording events with

- E>threshold in calorimeter
- polar and azimuthal coincidence
- ECAL cluster center vs HCAL block matches ep elastic

Off-line analysis

- pixel hodoscope adds more precise proton position
- Tighten cuts, especially polar angle

Detector System

HCAL - hadron calorimeter

- Reassembled from detector elements from the SBS HCAL
- 288 blocks, each $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Reassembled from detector elements from the NPS calorimeter
- 1200 blocks, each $2 \times 2 \times 20 \mathrm{~cm}^{3}$
- PbWO_{4} scintillator
- 1 cm lead shield

Scintillator array

- New detector, requires construction
- Used for improved position resolution in front of HCAL
- Not used to form trigger
- 7200 blocks, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$
- Lead shield in front (thickness to be optimized) to reduce photon load

Calorimeters reusing components

NPS electromagnetic calorimeter

- $1080 \mathrm{PBWO}_{4}$ scintillators, $\mathrm{PMTs}+$ bases
- will run in future NPS experiment

SBS hadronic calorimeter

- 288 iron/scintillator detectors, PMTs + bases
- Already in use with SBS

Scintillator Array

- New detector, must be built for this experiment
- Extruded plastic scintillator block
- Readout with wavelength-shifting fiber
- Each fiber read by pixel on multi-anode PMT
- 7200 blocks, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$

Design matches scintillator array built for GEP

- 2400 elements, $0.5 \times 4 \times 50 \mathrm{~cm}^{3}$
- Already built, will run next year

Installation in Hall C

3.5 m target shift downstream from pivot due to space limitation on the SHMS side Will need a very substantial frame to support HCAL

Scattering chamber

Cylindrical scattering chamber with large Al window to pass 15° electrons and 45° protons Design uses a cone with "ribs", plus an inverted hemisphere center, windows could be as thin as 0.5 mm

Requires air gap - will use He bag (not shown) to transport beam, so open air gap is only $\sim 50 \mathrm{~cm}$

Triggering

Grouping into "subsystems" for energy threshold and coincidence triggering of event record

- each polar column of detectors, overlapping with neighbors
- sum amplitude with conservative coincidence timing window
- compare to conservative energy threshold
-trigger when complementary (ECAL and HCAL) subsystems are both above threshold

Electron subsystems

Proton subsystems

- 288 iron/scintillators
- $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- 3×3 grouping for subsystem
- 96 overlapping subsystems

Fast Counting DAQ

Readout for fast counting is now very common challenge and enabled by new, and now common, technologies. In particular, SOLID will face this challenge in measurement of PV-DIS, and this experiment will be an important testing ground for precise asymmetry measurements.

Concept very similar to the HPS DAQ, used in 2019 or NPS DAQ:

JLab FADC250 for HCAL and ECAL readout Provides the pulse information for a fast, "deadtime-less" trigger
vxSIVME Crate

VTP (VXS Trigger Processor)
 Clusters in time, sums over subsystems, finds ECAL+HCAL coincidence

One VXS crate will handle one sixth of ECAL + HCAL, also provide external trigger for ScintArray pipelineTDC readout

Expect $\sim 50 \mathrm{kHz}$ total, $\sim 250 \mathrm{Mb} / \mathrm{s}$ data rate, distributed over 6 separate crates

ECAL cluster rates

Rates and Precision

Beam and target: 60 uA on $10 \mathrm{~cm} \mathrm{LH}_{2}=>$ luminosity is $1.6 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}$

Trigger (online)

- Elastic coincidence 18 kHz signal in full detector
- Inelastic (pion production) coincidence trigger rate $\sim 16 \mathrm{kHz}$
- Accidental coincidence rate $<0.2 \mathrm{kHz}$
- $\sim 150 \mathrm{kHz}$ total singles rate in ECAL $>4.5 \mathrm{GeV}$ energy threshold, $200 / 5$ unique subsystems
- ~19 MHz total singles rate in HCAL $>50 \mathrm{MeV}$ energy threshold, $96 / 3$ unique subsystems
- Temporal coincidence cut 40 ns
- $\sim 35 \mathrm{kHz}$ total coincidence trigger rate

Offline analysis

- clustering, scintillator array to improve geometric cuts, tighter acceptance and ECAL cut, 4 ns timing
- Accepted elastic signal reduced to 13 kHz - production statistics
- Inelastic (pion production) $<0.5 \%$, accidentals $<1 \times 10^{-5}$ due to angular precision and higher E cut

Beam polarization 85\%
40 days production runtime \rightarrow Raw asymmetry statistical precision $\delta\left(\mathrm{A}_{\text {raw }}\right) \sim 5 \mathrm{ppm}$ $\rightarrow A_{P V}=-150+/-6.2 \mathrm{ppm}$

Elastic event discrimination

dashed lines = offline cuts

Fraction of total by event type	Online	Offline
Elastic scattering	0.531	0.989
Inelastic (pion electro-production)	0.450	0.002
Quasi-elastic scattering (target windows)	0.015	0.008
π^{0} photo-production	0.004	0.001

"sideband" analyses will help verify QE and inelastic asymmetries

Error budget

quantity	value	contributed uncertainty
Beam polarization	$85 \% \pm 1 \%$	1.2%
Beam energy	$6.6+/-0.003 \mathrm{GeV}$	0.1%
Scattering angle	$15.5^{\circ} \pm 0.03^{\circ}$	0.4%
Beam intensity	$<100 \mathrm{~nm},<10 \mathrm{ppm}$	0.2%
Backgrounds	$<0.2 \mathrm{ppm}$	0.2%
G_{E}^{n} / G_{M}^{n}	-0.2122 ± 0.017	0.9%
G_{E}^{p} / G_{M}^{p}	0.246 ± 0.0016	0.1%
σ_{n} / σ_{p}	0.402 ± 0.012	1.2%
$G_{A}^{Z p} / G_{\text {Dipole }}$	-0.15 ± 0.02	0.9%
Total systematic uncertainty:		2.2%

$$
\text { or } 3.3 \mathrm{ppm}
$$

Statistical precision for A_{PV} : 6.2 ppm (4.1\%)

There is also an uncertainty from radiative correction, is small except for a dominant "anapole" piece. If the anapole uncertainty is not improved, this would contribute at additional $4.1 \mathrm{ppm}(2.7 \%)$ uncertainty

Projected result

$$
\begin{gathered}
\delta \mathrm{A}_{\mathrm{PV}}= \pm 6.2 \text { (stat) } \pm 4.5 \text { (syst) } \\
\delta\left(G_{E}^{s}+3.1 G_{M}^{s}\right)= \pm 0.013 \text { (stat) } \pm 0.010 \text { (syst) }=0.016 \text { (total) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } G_{M}^{s}=0, \delta G_{E}^{s} \sim 0.016, \quad\left(\text { about } 34 \% \text { of } \mathrm{G}_{\mathrm{D}}\right) \\
& \text { If } G_{E}^{s}=0, \delta G_{M}^{s} \sim 0.0052,\left(\text { about } 11 \% \text { of } \mathrm{G}_{\mathrm{D}}\right)
\end{aligned}
$$

The proposed measurement is especially sensitive to G_{M}
The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Summary

Configuration \#	Procedure	Beam current, $\mu \mathrm{A}$	time, days
C1	Beam parameters	$1-70$	1
C2	Detector calibration	10	$2 / 3$
C3	Dummy target data	20	$1 / 3$
C4	Moller polarimetery	$1-5$	3
C5	$A_{P V}$ data taking	60	40
	Total requested time		45

- 10+ years after the last sFF searches were performed, a new experiment is proposed for much higher Q^{2}, motivated by interest in flavor decomposition of electromagnetic form factors
- Projected accuracy at 11% of the dipole value allows high sensitivity search for non-zero strange form factor.
- The proposed error bar is in the range possibly suggested by lattice predictions, and significantly inside the range from the simple extrapolation from previous data
-These results will be crucial to support the interpretation of the nucleon form-factors as constraints on GPDs
- We are requesting PAC approval of 45 days of beam time (65 uA on 10 cm long LH2 target).

Backup slides

Helicity-correlated Beam Asymmetries

Position differences (like angle, but angle $\sim 10 x$ smaller):
APV roughly proportional to Q^{3}, so sensitivity $\delta A / \delta \theta \sim 3 \delta \theta / \theta$
Assume very large (by today's standards) position difference of 200 nm , to be compared to 64 cm radius of ECAL
$200 \mathrm{~nm} / 64 \mathrm{~cm} \sim 0.3 \mathrm{ppm}$, or 0.2\%
Similarly, energy, assuming 200 nm in dispersive bpm ($\sim 1 \mathrm{~m}$ dispersion) $\rightarrow 0.2 \mathrm{ppm}$, or 0.15%
Azimuthal symmetry leads to excellent cancellation, so the net effects will be very small. Can be checked with regression

Charge asymmetry

Using feedback, <10ppm easily achievable. 1% calibration $\rightarrow 0.1$ ppm systematic, 0.06%

Pion electro-production contribution

Pion production rate
above offline ECAL threshold $\sim 3 \mathrm{kHz}$

Angular separation:
6° (at Δ peak)
2.8° (at π threshold)

Angular resolution $\sim 0.6^{\circ}$ (polar)

Proton cone around Δ recoil, projected to polar angle:
RMS $=2^{\circ}($ so, 2.5σ separation for $\Delta)$

Fraction to elastic rate $<0.3 \%$

Pion-production background rate calculation

Online:
Electron arm single rate for $\mathrm{E}_{\mathrm{e}^{\prime}}>5 \mathrm{GeV}$ is $\sim 18 \mathrm{kHz}$ about 50% enters HCAL acceptance as coincidence, so $\sim 10 \mathrm{kHz}$

Offline:
electron arm single rate for $\mathrm{E}>5.2 \mathrm{GeV}$ is $\sim 3 \mathrm{kHz}$
high angular resolution excludes $>99 \%$

Accidental background coincidence calculation

Online:
Electron arm single rate for $\mathrm{E}_{\mathrm{e}^{\prime}}>5 \mathrm{GeV}$ is $\sim 18 \mathrm{kHz}: 18 \mathrm{~Hz} /$ detector, $450 \mathrm{~Hz} /$ subsystem
Proton arm single rate $1.2 \mathrm{MHz}: 36 \mathrm{kHz} /$ subsystem
Time window in the trigger $40 \mathrm{~ns}->$ total accidental coincidence rate $\sim 0.2 \mathrm{kHz}$
Offline:
Time window in analysis 4 ns
Accidental rate is 0.02 Hz in high resolution part of solid angle
of sub-system where elastic rate is 70 Hz .

Next reduction due to higher threshold in offline analysis:
electron arm single rate for $\mathrm{E}>5.2 \mathrm{GeV}$ is $3 \mathrm{kHz}->$ extra factor of 5

Single pion photo-production contribution pion (ECAL) - proton (HCAL) coincidence

EPA: functions $\mathrm{N}(\omega)$, different E

$$
\begin{aligned}
\frac{d \sigma}{d t}_{r n \rightarrow \pi^{-} p} & =1.7 \times 0.83 \times\left(\frac{10}{s\left[\mathrm{GeV}^{2}\right]}\right)^{7}(1-z)^{-5}(1+z)^{-4}\left(\mathrm{nb} / \mathrm{GeV}^{2}\right), \\
N_{\pi^{-} p} & =\frac{d \sigma}{d t}{\pi^{-} p} \frac{p_{\pi^{-}}^{2}}{\pi} \Delta \Omega_{\pi^{-}} f_{\pi^{-} p}\left[\frac{\Delta E_{\gamma}}{E_{\gamma}} \frac{t_{r a d}}{X_{o}} \mathcal{L}_{e n}\right]
\end{aligned}
$$

Near the end point the photon yield
is going down \longrightarrow reduction in factor t_{rad} / X_{0}
$\mathrm{f}_{\pi-\mathrm{p}}$ takes care of the cuts on angular correlation/resolution

Remaining single pion events $<0.2 \%$ of elastic rate

Background events from Al

- assumed 5 mils target cell windows, $\sim 5 \%$ nucleon
- Fermi energy smears quasi-elastic scattering distribution, about $80 x$ suppression
- B/S < 0.1\%
- a dummy target will be used to check accepted rate

Anapole Moment

In the context of a very large discrepancy from SAMPLE, the anapole radiative correction was investigated as a possible cause

$$
\tilde{G}_{A}^{e}\left(Q^{2}\right)=\left[\tau_{3} g_{A}\left(1+R_{A}^{(T=1)}\right)+\frac{3 F-D}{2} R_{A}^{(T=0)}+\left(1+R_{A}^{(0)}\right) \Delta s\right] G_{A}^{D}\left(Q^{2}\right)
$$

The 1-quark and many-quark corrections to the axial charges in the $\overline{M S}$ renormalization scheme.

	$R_{A}^{(T=1)}$	$R_{A}^{(T=0)}$	$R_{A}^{(0)}$
1-quark	-0.172	-0.253	-0.551
Many-quark	$-0.086(0.34)$	$0.014(0.19)$	-
Total	$-0.258(0.34)$	$-0.239(0.20)$	-0.551

values from Shi-Lin Zhu, S.J. Puglia, Barry R. Holstein,
M.J. Ramsey-Musolf, Phys. Rev. D 62 (2000) 033008.

Suggests a coefficient on the axial term at $\mathrm{Q}^{2}=0$:

$$
\left(1+R_{A}^{(T=1)}\right)=0.74 \pm 0.34
$$

Without improvement, this would correspond to 4.1 ppb , or 2.7% of A_{PV}
Q^{2} dependence was explored at that time - suggested that it may be significant, but hasn't been evaluated since, or to high Q^{2}.
(Here, I believe this $\mathrm{F}\left(\mathrm{Q}^{2}\right)$ multiplies only the many-quark $R_{A}^{(T=1)}=-0.086$ contribution.)

Q^{2} dependence of F_{2} / F_{1}

pQCD prediction for large Q^{2} : scaling

$$
S \rightarrow Q^{2} F_{2} / F_{1}
$$

pQCD updated prediction:

$$
S \rightarrow\left[Q^{2} / \ln ^{2}\left(Q^{2} / \Lambda^{2}\right)\right] F_{2} / F_{1}
$$

The lines for individual flavor are straight: $F_{2} / F_{1} \sim$ constant

Gamma-Z Box

Additional radiative correction to Q_{w}

$$
Q_{W}^{p}=\left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right)+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}(0)
$$

For Qweak, added $\sim 0.5 \%$ uncertainty

Here, $\square_{\gamma Z}^{\mathrm{v}}(0)=0.0095 \pm 0.0005$ and $\square_{\gamma Z}^{\mathrm{a}}(0)=-0.0036 \pm 0.0004$ which together is about $1.33 \pm 0.14 \mathrm{ppm}(0.9 \pm 0.1 \%)$

Caveat: this calculation is for forward direction. Off-forward expected to be greatly reduced (but this is also model dependent).

Axial piece smaller, didn't receive as much recent attention/update, seems stable with energy

Why search at high Q2?

PARAMETER $\boldsymbol{\beta}$ IN $\phi \rightarrow \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$DECAY

This combined phi-pi radius $\sim 0.69 \mathrm{fm}$ with a pi-0 radius of $\sim 0.64 \mathrm{fm}$ and a ϕ-meson radius of $\sim 0.26 \mathrm{fm}$

