PseudoPDFs

Parton Densities

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists

Evolution in lattice data

Evolution
23 -dependence
Matching
Range of applicabilit
Dynamic fermions

Pseudo-PDFs and extraction of PDFs from lattice A.V. Radyushkin (ODU/Jlab)

SBS Collaboration Meeting July 18, 2023

Supported by JSA, and by U.S. DOE Grant

Hadrons and Partons

PseudoPDFs

Parton Densities

Pseudodistributions on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice data

Evolution
23 -dependence
Matching
Range of applicability
Dynamic fermions
Gluon PDFs

- Experimentally, we work with hadrons
- Theoretically, we works with quarks

Can be described in coordinate or momentum space

$$\langle p|\phi(0)\phi(z)|p\rangle \equiv M(z,p) = \frac{1}{\pi^2} \int d^4k \, e^{-ikz} \, \chi(k,p)$$

Concept of PDFs does not rely on spin complications

Light-cone PDFs

PseudoPDFs

Parton Densities Light-cone PDFs

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

lattice of

z § -dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs

- $\begin{tabular}{ll} \blacksquare & \mbox{In momentum representation:} \\ \mbox{PDF } f(x) & \mbox{gives probability that} \\ \mbox{parton carries fraction } xp^+ \\ \mbox{of hadron momentum component } p^+ \\ \end{tabular}$
- $\begin{tabular}{ll} \bullet & \mbox{In coordinate representation:} \\ \mbox{PDF } f(x) \mbox{ is given by Fourier} \\ \mbox{transform of matrix element } M(z,p) \\ \mbox{on the light cone } z^2=0 \\ \end{tabular}$
- By Lorentz invariance, M(z, p) is a function of (zp) and z^2 , i.e. (zp) only when $z^2 = 0$

$$f(x) = \frac{p^+}{2\pi} \int_{-\infty}^{\infty} dz^- e^{ixp^+z^-} M(z^-, p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \, \mathcal{I}(\nu)$$

- Infe-time distribution $\mathcal{I}(\nu)$
- Observation: ν -dependence governs x-dependence

Pseudodistributions

PseudoPDFs

Parton Densities Light-cone PDFs

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

lattice d

z3 -dependence
Matching
Range of applicabilit
Dynamic fermions
Gluon PDFs

- Lattice is Euclidean: no lightcone separations
- Take z off the light cone: $z^2 < 0$
- By Lorentz invariance $M(z,p) = \mathcal{M}(-(pz),-z^2)$
- Infe time $\nu = -(pz)$
- $\mathcal{M}(\nu, -z^2)$: pseudo-ITD
- Pseudo \equiv off the light cone, $z^2 \neq 0$
- Using Schwinger's α -representation, it is possible to show that, for any contributing Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^1 dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- $\mathcal{P}(x, -z^2) = \text{pseudo-PDF}$, or PDF off the light cone
- $e^{ix\nu}=e^{-ix(pz)}$: decomposition over plane waves with momentum k=xp
- "Canonical" limits $-1 \le x \le 1$
- Negative x correspond to anti-particles
- Note: x is Lorentz invariant: same "on" and "off" LC

Pseudodistributions on the lattice

PseudoPDFs

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization

Evolution

Evolution $2\frac{2}{3}$ -dependence Matching Range of applicabili Dynamic fermions Gluon PDFs

- On the lattice: cannot take "z" on the light cone Need to take it off the light cone!
- Take $z = \{0, 0, 0, z_3\}$ (X. Ji (2013), quasi-PDF approach, $p_3 \to \infty$)
- Pseudo-PDF approach is based on key observation: It does not matter if ν was obtained as $-(p_+z_-)$ or as p_3z_3 : the function $\mathcal{M}(\nu,-z^2)$ is the same!
- For $z=z_3$, we have $\nu=p_3z_3$ and $-z^2=z_3^2$
- Analogy with DIS structure functions $W(\omega,Q^2)$
- \bullet $\omega = 1/x$ and
- 1/Q characterizes "probing distance"
- In pseudo-PDFs, z_3 is the "probing distance" literally
- Important to realize: dependence of M(z, p) on z comes (1) through dependence on (pz) and (2) remaining dependence on z for a fixed (pz)
- Pseudo-PDF strategy: map lattice data on $M(z_3,p)$ in terms of ν and z_3^2 and extrapolate $\mathcal{M}(\nu,z_3^2)$ to $z_3^2=0$
- Need to understand various types of z^2 -dependence of $\mathcal{M}(\nu, z_3^2)$

Link-related z_3^2 -dependence

PseudoPDFs

Link self-energy

- Specific source of z²-dependence in QCD: gauge link $\hat{E}(0,z;A) = P \exp\{ig \int_0^z A^{\mu} dx_{\mu}\}$
- It comes together with ultraviolet divergences: linear $\sim z_3/a$ and logarithmic $\ln(z_3^2/a^2)$, where $a \sim \text{UV}$ cut-off, e.g. lattice spacing a_L
- At one loop, UV terms have been calculated in lattice perturbation theory (Ji et al., 2016)
- Result close to that obtained using Polyakov regularization $1/z^2 \rightarrow 1/(z^2 - a^2)$ for gluon propagator in coordinate space, with $a = a_L/\pi$

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2 \frac{|z_3|}{a} \tan^{-1} \left(\frac{|z_3|}{a} \right) - \ln \left(1 + \frac{z_3^2}{a^2} \right) \right]$$

- 1-loop result exponentiates in higher orders, producing $\sim e^{-2\alpha_s z_3/3a}$ factor for large z_3
- Vertex corrections produce extra $\frac{\alpha_s}{2\pi} C_F \ln \left(1 + z_3^2/a^2\right)$ term exponentiating in higher orders

Renormalization

PseudoPDFs

Parton Densities

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists

lattice dat

Explution $z\frac{\pi}{3}$ -dependence Matching Range of applicabili Dynamic fermions Gluon PDFs

Link-related UV divergences have the same structure as in HQET

- They are multiplicatively renormalizable (Qiu et al., Ji et al., Green et al. 2017)
- UV regulator a appears only in the combination z_3/a
- UV-sensitive terms form a factor $Z(z_3^2/a^2)$
- This factor is an artifact of having a non-lightlike z: Z=1 on the light cone
- It has nothing to do with the usual PDFs
- \bullet We should build modified function $Z^{-1}(z_3^2/a^2)\mathcal{M}(\nu,z_3^2;a)$
- lacksquare To do this, one should know the $Z(z_3^2/a^2)$ factor
- Easier way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu,z_3^2) \equiv \frac{\mathcal{M}(\nu,z_3^2)}{\mathcal{M}(0,z_3^2)} = \lim_{a \rightarrow 0} \frac{\mathcal{M}(\nu,z_3^2;a)}{\mathcal{M}(0,z_3^2;a)}$$

 $\bullet \ \ Z(z_3^2/a^2)$ factors cancel, and $\mathfrak{M}(\nu,z_3^2)$ has finite $a\to 0$ limit

Rest-frame density and Z factor

PseudoPDFs

Parton Densities

Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization

Rest-frame density Higher twists Lattice & pPDFs

Evolution in

z g -dependence

Matching

Range of applicability

Dynamic fermions

 Exploratory study in quenched approximation (Orginos et al. 2017), is still the most precise pPDF calculation

- Allows to study basic aspects of hadron dynamics on the lattice
- lacktriangle Rest-frame density $\mathcal{M}(0,z_3^2)$ is produced by data at $p_3=0$

- $\mathcal{M}(0, z_3^2)$ serves as the UV renormalization factor
- \bullet Red line is exponential of 1-loop result for link self-energy and vertex corrections with $\alpha_s=0.19$
- Very strong effect from $Z(z_3^2) \sim e^{-c|z_3|/a}$

Higher-twist effects

PseudoPDFs

From phenomenology: $f(x,k_\perp)\sim e^{-k_\perp^2/\Lambda^2}f(x)$, with $\Lambda\sim300~{\rm MeV}$

- Reflects finite hadron size
- Translates into $\mathcal{P}(x,z_3^2) \sim e^{-z_3^2\Lambda^2/4}f(x)$ for pPDF
- \bullet Translates into $\mathcal{M}(\nu,z_3^2)\sim e^{-z_3^2\Lambda^2/4}I(\nu)$ for pITD

- Small correction compared to $Z(z_3^2)$
- Also: cancels in the $\mathcal{M}(\nu, z_3^2)/\mathcal{M}(0, z_3^2)$ ratio
- If $\mathcal{M}(\nu,z_3^2)\sim e^{-z_3^2\Lambda^2/4}I(\nu)$ is not perfect, some residual HT terms $\sim z_3^2\lambda^2$ may remain, with $\lambda\lesssim 100$ MeV
- Strategy: fit residual HT from data

Densities Light-cone Pi Pseudodistrit

Renormalization
Rest-frame densit
Higher twists

Evolutio lattice d

Matching
Range of applicabil
Dynamic fermions
Gluon PDFs

Pseudo-PDF strategy in action

PseudoPDFs

• Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ for the valence $u_v - d_v$ parton distribution in the nucleon [Orginos et al. 2017]

- Lattice QCD calculations in quenched approximation
- $32^3 \times 64$ lattices, lattice spacing a = 0.093 fm
- Pion mass 601(1) MeV and nucleon mass 1411(4)MeV
- Six lattice momenta $p_i(2\pi/L)$, with 2.5 GeV maximal momentum
- Relation between PDF and ITD involves $e^{ix\nu} = \cos x\nu + i\sin x\nu$

$$\mathcal{I}(\nu) = \int_{-\infty}^{\infty} d\nu \, e^{ix\nu} \, f(x)$$

• Real part of ITD $\mathcal{I}(\nu)$ corresponds to cosine Fourier transform of $q_v(x) = u_v(x) - d_v(x)$

$$\mathcal{R}(\nu) \equiv \operatorname{Re} \mathcal{I}(\nu) = \int_{0}^{1} dx \, \cos(\nu x) \, q_{v}(x)$$

On the lattice, we extract the reduced pseudo-ITD

$$\mathfrak{M}(
u, z_3^2) \equiv rac{\mathcal{M}(
u, z_3^2)}{\mathcal{M}(0, z_3^2)}$$

Lattice & pPDFs

Reduced loffe-time distributions

PseudoPDFs

Lattice & pPDFs

• Left: Real part of the ratio $\mathcal{M}(Pz_3,z_3^2)/\mathcal{M}(0,z_3^2)$ as a function of z_3

- Taken at six values of P ⇒ curves have Gaussian-like shape
- $\bullet \Rightarrow Z(z_3^2)$ link factor cancels in the ratio

- Right: Same data, as functions of $\nu = Pz_3$ (z_3^2 varies from point to poiint)
- Data practically fall on the same universal curve
- Data show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD

Evolution z_3^2 -dependence

PseudoPDFs

• After cancellation of z_3^2 -dependence from $Z(z_3^2)$ and (hopefully) HT:

 \bullet Remaining $z_3^2\text{-dependence}$ corresponds to perturbative (DGLAP) evolution

At one loop,

$$\mathfrak{M}^{(1)}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathfrak{M}^{(0)}(u\nu)$$

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

lattice data
Evolution
23-dependence
Matching
Range of applicate

Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_+$$

- Example of z_3 -dependence for $\nu=12\pi/16\approx 2.36$
- "Magic" loffe-time pz value: $12=1\times 12=2\times 6=3\times 4=4\times 3=6\times 2$ can be obtained for 5 different z's
- Shows "perturbative" $\ln(1/z_3^2)$ for small z_3
- Close to a constant for $z_3 > 6a$
- Finite-size ("HT") effect in 1-loop terms

Evolution in lattice data

PseudoPDFs

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists

lattice data
Evolution
23 -dependence
Matching
Range of applicabili
Dynamic fermions
Gluon PDFs

- Points corresponding to $7a \le z_3 \le 13a$ values
- Some scatter for points with $u \gtrsim 10$
- Otherwise, practically all the points lie on a universal curve
- No z_3^2 -evolution visible in large- z_3 data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the $z_3 \ge 7a$ data
- Perturbative evolution increases real part of the pseudo-ITD when z₃ decreases
- Observed higher values of $\operatorname{Re} \mathfrak{M}$ for smaller- z_3 points are a consequence of evolution

Matching relations

PseudoPDFs

Parton Densities

Pseudodistributions on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

Evolution 23-dependence Matching

Matching
Range of applicability
Dynamic fermions
Gluon PDFs

 \bullet Matching condition between reduced pseudo-ITD and $\overline{\rm MS}$ ITD (Y. Zhao 2017, A.R. 2017)

$$\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2) \times \left\{ B(w) \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\}$$

Building MS ITD

- Points in $a \le z_3 \le 4a$ region $\mu = 1/a_L \approx$ 2.15 GeV , $\alpha_s/\pi = 0.1$
- Evolved points have a rather small scatter
- The curve corresponds to the cosine transform of a normalized $\sim x^a (1-x)^b$ distribution with a=0.35 and b=3
- ullet Upper curve: ITD of the CJ15 global fit PDF for μ =2.15 GeV

Range of applicability

PseudoPDFs

Range of applicability

Rule of thumb: use perturbation theory when correction is small

$$\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2)$$

$$\times \left\{ B(w) \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\}$$

- $\bullet \;\;$ Factor $e^{2\gamma_E}/4\approx 1/1.2$ relates scales in $\overline{\rm MS}$ and " z^2 " scheme
- Suggesting $\Lambda_{z^2} \approx \Lambda_{\overline{\rm MS}}/1.1$
- Next step: $\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2)$ when α_s correction is zero
- lacktriangle This happens when $\mu pprox 4/z_3$, because of large correction from $\ln(1-w)$
- Numerically: $\mathcal{I}(\nu, (2\,\mathrm{GeV})^2) \approx \mathfrak{M}(\nu, (0.4\,\mathrm{fm})^2)$
- Take $\mu = 1$ GeV: $\mathcal{I}(\nu, (1\text{GeV})^2) \approx \mathfrak{M}(\nu, (0.8 \, \text{fm})^2)$
- lacktriangledown for $a_L \sim 0.1$ fm , PT is formally applicable till $z_3 \sim 8 a_L$
- Caution: data show deviation from $\ln(z_3^2)$ for $z_3 \gtrsim 5a_L$
- Finite hadron size effects in $\mathcal{O}(\alpha_s)$ terms

Dynamic fermions (Joo et al., 2019)

PseudoPDFs

a . . . 0

Reduced ITD for two lattice spacings

attice data Evolution 2 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Z-factor Re $\mathcal{M}(0, z_3^2)$ for two lattice spacings
- Essentially universal function of z/a
- Curve is given by perturbative formula for the link Z(z/a) factor with $\alpha_s=0.26$
- $a_L=0.094$ data are described by PT formula with $\alpha_s=0.24$

PDF from dynamic fermions (2019)

PseudoPDFs

Parton Densitie

Pseudodistribution: on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

lattice d

Evolution
2 3 -dependence
Matching
Range of applicability
Dynamic fermions

• Light-cone ITD for $\mu=2~{\rm GeV}$ extracted from $a=0.127~{\rm fm}$ data

PDF compared to global fits

PseudoPDFs

Dynamic fermions

3

(H) 2

Z-factor Re $\mathcal{M}(0, z_3^2)$ is clearly a function of z_3/a_L

0.2

0.4

0.8

- α_s decreases with a_L . Check if it is $\alpha_s(1/a_L)$
- Since $\alpha_s(1/a_L) = 2\pi/[b_0 \ln(1/a_L \Lambda)],$ we plot $1/\alpha_s$ versus $\ln(1/a_L)$
- Fit corresponds to $\Lambda=200$ MeV, and $\beta_0=11.4$
- Since $\beta_0 = 11 2N_f/3$, contribution of quark loops into α_s in this simulation is not visible
 - Comparison with global fits
 - Lattice result is smaller for small x
 - Pion mass was taken 440 MeV
 - Too large to give realistic PDF for small x
 - Higher twists $\lesssim 0.15 \, \Lambda_{\rm QCD}^2 z_3^2$

Gluon PDFs

PseudoPDFs

Correlator of two gluon fields has 4 indices

$$M_{\mu\alpha;\nu\beta}(z,p) \equiv \langle p| G_{\mu\alpha}(z) [z,0] G_{\nu\beta}(0)|p\rangle$$

• Need 6 invariant amplitudes $\mathcal{M}(\nu, z^2)$

 $+ (g_{\mu\nu}g_{\alpha\beta} - g_{\mu\beta}g_{\alpha\nu}) \mathcal{M}_{aa}(\nu, z^2)$

$$\begin{split} &M_{\mu\alpha;\nu\beta}(z,p) = \left(g_{\mu\nu}p_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}p_{\nu} - g_{\alpha\nu}p_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\nu}\right)\mathcal{M}_{pp}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\nu} - g_{\alpha\nu}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\nu}\right)\mathcal{M}_{zz}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}z_{\alpha}p_{\beta} - g_{\mu\beta}z_{\alpha}p_{\nu} - g_{\alpha\nu}z_{\mu}p_{\beta} + g_{\alpha\beta}z_{\mu}p_{\nu}\right)\mathcal{M}_{zp}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}p_{\alpha}z_{\beta} - g_{\mu\beta}p_{\alpha}z_{\nu} - g_{\alpha\nu}p_{\mu}z_{\beta} + g_{\alpha\beta}p_{\mu}z_{\nu}\right)\mathcal{M}_{pz}(\nu,z^{2}) \\ &+ \left(p_{\mu}z_{\alpha} - p_{\alpha}z_{\mu}\right)\left(p_{\nu}z_{\beta} - p_{\beta}z_{\nu}\right)\mathcal{M}_{ppzz}(\nu,z^{2}) \end{split}$$

• "Light-cone" gluon distribution $f_a(x)$ is defined through the convolution $q^{\alpha\beta}M_{+\alpha:\beta+}(z,p)$, with z taken in the light-cone "minus" direction, $z=z_-$:

$$g^{\alpha\beta}M_{+\alpha;\beta+}(z_-,p) = p_+^2 \int_{-1}^1 dx \, e^{ixp_+z_-} x f_g(x)$$

In terms of invariant amplitudes

$$g^{\alpha\beta}M_{+\alpha;\beta+}(z_{-},p) = -2p_{+}^{2}\mathcal{M}_{pp}(\nu,0)$$

Gluon PDFs

Picking out twist-2 distribution

PseudoPDFs

Parton Densities

Pseudodistributions on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice da

Evolution $z \frac{1}{3}$ -dependence Matching Range of applicabili Dynamic fermions Gluon PDFs

- Strategy is to choose matrix elements $M_{\mu\alpha;\lambda\beta}$ that contain \mathcal{M}_{pp} in their parametrization and ideally nothing else!
- Split the "+" components onto sum of space- and time-components
- Due to antisymmetry of $G_{\rho\sigma}$ with respect to its indices, $g^{\alpha\beta}M_{+\alpha;\beta+}(z,p)$ includes summation over transverse indices i,j=1,2 only

$$g^{ij}M_{+i;j+} = -M_{+1;1+} - M_{+2;2+} = M_{0i;0i} + M_{3i;3i} + (M_{0i;3i} + M_{3i;0i})$$

Decomposition of these matrix elements in invariant amplitudes

$$\begin{split} &M_{0i;i0} = 2p_0^2 \mathcal{M}_{pp} + 2\mathcal{M}_{gg} \\ &M_{3i;i3} = 2p_3^2 \mathcal{M}_{pp} + 2z_3^2 \mathcal{M}_{zz} + 2z_3 p_3 \left(\mathcal{M}_{zp} + \mathcal{M}_{pz}\right) - 2\mathcal{M}_{gg} \\ &M_{0i;i3} = 2p_0 \left(p_3 \mathcal{M}_{pp} + z_3 \mathcal{M}_{pz}\right) \\ &M_{3i;i0} = 2p_0 \left(p_3 \mathcal{M}_{pp} + z_3 \mathcal{M}_{zp}\right) \end{split}$$

- All contain the \mathcal{M}_{pp} , though with different kinematical factors
- Unfortunately, none of them is just \mathcal{M}_{pp}
- Fortunately, $M_{ii:ij} = -2\mathcal{M}_{qq}$
- Hence, the combination

$$M_{0i;i0} + M_{ji;ij} = 2p_0^2 \mathcal{M}_{pp}$$

may be used for extraction of the twist-2 function \mathcal{M}_{pp}

Gluon PDF extraction

PseudoPDFs

Reduced Ioffe-time pseudo-distribution $\mathfrak{M}(\nu, z^2)$

Gluon PDFs

Extracted gluon distribution (HadStruc, 2021)

Polarized gluon distribution

PseudoPDFs

Parton Densities

Pseudodistributions on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

Evolution ir lattice data Evolution zg-dependent

23 -dependence Matching Range of applicabili Dynamic fermions Gluon PDFs

- In the polarized gluon case, tensor structures may be built from 3 vectors: z_u, p_u and s_u
- As a result, one deals with 12 invariant amplitudes
- Combination, similar to that used in unpolarized case

$$\widetilde{M}_{0i;0i}(z,p) + \widetilde{M}_{ij;ij}(z,p) = -2p_z p_0 \widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) + 2p_0^3 z \widetilde{\mathcal{M}}_{pp}(\nu,z^2)$$

The polarized gluon PDF is determined by the loffe-time distribution

$$-i\widetilde{\mathcal{I}}_p(\nu) \equiv \widetilde{\mathcal{M}}_{ps}^{(+)}(\nu) - \nu \widetilde{\mathcal{M}}_{pp}(\nu)$$

 $\qquad \text{Matrix element } \widetilde{M}_{0i;0i}(z,p) + \widetilde{M}_{ij;ij}(z,p) \text{ has a "slightly" different structure}$

$$\widetilde{\mathfrak{M}}(\nu,z^2) = \left[\widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) - \nu \widetilde{\mathcal{M}}_{pp}(\nu,z^2)\right] - \frac{m_p^2}{p_z^2} \nu \widetilde{\mathcal{M}}_{pp}(\nu,z^2)$$

• The goal is to eliminate the $\mathcal{O}(m_p^2/p_z^2)$ contamination term and extract $\widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) - \nu \widetilde{\mathcal{M}}_{pp}(\nu,z^2)$

Extraction of polarized gluon PDF

PseudoPDFs

Parton

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution ir lattice data

Evolution
23 -dependence
Matching
Range of applicability
Dynamic fermions
Gluon PDFs

• Reduced loffe-time pseudo-distribution $\widetilde{\mathfrak{M}}(\nu,z^2)$

Comparison with experimental fits converted into ITD (HadStruc, 2022)

PseudoPDFs

Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density

Evolution in

Evolution 23 -dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs

- Psedodistribution approach allows to study hadron structure in a way similar to experimental study of DIS
- Instead of structure functions $W(x,Q^2)$, we study loffe-time distributions $\mathcal{M}(\nu,z_3^2)$
- $ullet z_3$ is probing scale, like 1/Q in DIS
- Detailed studies of ν and z_3^2 -dependence decipher subtleties of hadron dynamics
- Existing lattice extractions of PDFs still play exploratory role
- The current goal is to check that lattice methods give reasonable results for PDFs known experimentally
- The future goal is to get the functions which are not directly accessible by experiment: a key example is given by GPDs $H(x, \xi; t)$