Update on nTPE Analysis & Thesis Progress

Ezekiel W. Wertz July 18, 2023

Neutron Two-Photon Exchange (nTPE) Experiment

Name	Ebeam (GeV)	BigBite angle (deg)	BigBite Distance (m)	SBS angle (deg)	SBS distance (m)	HCAL "angle" (deg)	HCAL distance (m)	Q^2 (GeV^2)	Electron P (GeV)	Nucleon P (GeV)
SBS-8	5.965	26.5	2.00	29.9	2.25	<mark>29.4</mark>	11.0	4.5	3.58	3.2
SBS-9	4.015	49.0	1.55	22.5	2.25	<mark>22.0</mark>	11.0	4.5	1.6	3.2

SBS-8

- SBS nTPE is the first measurement of the Rosenbluth Slope(RS) for the neutron using the ratio method
- Data taken January & February 2022 for total of 19 days at 2 different kinematic (ε) values
- Exploiting the linearity of the reduced cross section (σ_r) in ϵ and assuming OPE, neutron FFs can be extracted:

$$\sigma_L = G_E^2$$
 is slope

- $\sigma_T = \tau G_M^2$ is vertical-axis intercept
- Rosenbluth Slope Extraction:

$$\sqrt{\tau \cdot RS} = \sqrt{\frac{\tau |\sigma_L|}{\sigma_T}} = \frac{G_E}{G_M}$$

2/14

Measured Observable: $R_{observed} = \frac{N_{e,e'n}}{N_{e,e'p}}$, $N_{e,e'n} / N_{e,e'p}$ are detector yields for quasi-elastic neutrons/protons

• No free neutron target, so use deuterium. Taking ratios from double-arm experiment cancels many systematic effects (Durand/Ratio Method).

Nuclear & Radiative Corrections: $R_{corrected} = f_{corr} \times R_{observed}$

• Neutron & Proton in Deuteron are not free particles.

Relation to Cross-Sections: $R_{corrected} = \frac{\sigma_{Mott}^n \cdot (1+\tau_p)}{\sigma_{Mott}^p \cdot (1+\tau_n)} \times \frac{\epsilon \sigma_L^n + \sigma_T^n}{\epsilon \sigma_L^p + \sigma_T^p}$

$$R_{corrected,\epsilon_1} = R_{Mott,\epsilon_1} \times \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_1 \sigma_L^p + \sigma_T^p} \qquad \qquad R_{corrected,\epsilon_2} = R_{Mott,\epsilon_2} \times \frac{\epsilon_2 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^p + \sigma_T^p}$$

Physics result, σ_L^n and σ_T^n :

Consider ratio of $R_{corrected}$ for two values of ϵ and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$A \equiv \frac{R_{corrected,\epsilon_1}}{R_{corrected,\epsilon_2}} = B \times \frac{1 + \epsilon_1 S_c^n}{1 + \epsilon_2 S_c^n} \approx B \times (1 + \Delta \epsilon \cdot S_c^n)$$

From Data Proton Kinematic Physics Result!

Proton Global Data: From global analysis of *e-p* cross-section. Taken as known.

$$B = \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \times \frac{1 + \epsilon_2 S_c^p}{1 + \epsilon_1 S_c^p} \approx 1 - \Delta \epsilon \cdot S_c^p$$

Thesis Scope

- **Primary focus:** physics extraction for the nTPE experiment to determine the Rosenbluth slope for the neutron.
- SBS nTPE is the first measurement of the Rosenbluth Slope for the neutron using the ratio method
- Thesis will also include the following:
 - 1. GEM Hardware commissioning and installation work for $G_M^n/nTPE$ run period
 - 2. GEM gain match software calibration for $G_M^n/nTPE$ run period

Data Analysis Overview

7/18/23

Data Analysis Part 1

7/18/23

Data Analysis Part 3 SBS8 & SBS field 100%

Ezekiel W. Wertz

Data Analysis Part 4 SBS8 & SBS field 100%

Background fit: 4th order polynomial Nucleon Fits: Gaussian

7/18/23

Data Analysis Part 5 SBS8 & SBS field 100%

GEM Gain Match Calibration & Status

- **Purpose**: Compare signal amplitudes from amplifier cards (APV). Correct amplitude variations for each amplifier card by generating gain coefficients.
- First-pass creation of gain • coefficients (max 29 sets) & thresholds complete.
- After gain match most sets see slight increase in # good tracks
- Some runs see reduction in # good • tracks or track based efficiency, requires investigation.
- Need to compare yields from hydrogen data for subset of gain coefficient sets and add to main software.

Analysis Outlook

In-Progress (me):

- Refine Yield fits by implementing ROOT interpolation function and sideband analysis
- Refine code for HCal Detection Efficiency for proton. Evaluate multiple methods already suggested by HCal expert
- HCal Detection Efficiency for Neutron will be based on Monte Carlo and Proton Efficiency matching
- Implement better method for backgrounds based on W^2 Anti-cut
- Implement better fiducial and acceptance cuts
- Implement Gain Coefficients for pass-2.

In-Progress (collaboration):

- Dedicated effort to implement nuclear & radiative corrections into simulation from existing framework from Hall C
- Effort for 2nd Mass-Replay & Detector Calibration is underway, tasks necessary for preliminary physics results
- Determine error analysis, mainly systematics

Research Outlook: The Big Plan™

	2023								2024						
Task	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June
Analysis/ Result															
2 nd Pass Replay															
Writing Thesis Parts															
Writing Thesis Only															
Find Job															
Defense															
JLUO Grad Rep			Ends												
GSA Board		Ends													
Other		Comp Works hop	HUGs JLUO				DNP			GRAD 520		GHRS	APS/ Later Conf		
7/1	8/23					E	zekiel W	. Wertz						14/14	

Thank You! Questions?

References:

- Benmokhtar, F., et al. "Precision Measurement of the Neutron Magnetic Form Factor up to Q 2= 18.0 (GeV/c) 2 by the Ratio Method." (2008). Proposal# E12-09-19.
- Cates, G., et al. "Measurement of the neutron electromagnetic form factor ratio Gn E/Gn M at high Q2." (2009). Proposal# E12-09-16.
- 3. Perdrisat, C. F., et al. "Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c) 2 Using Recoil Polarization Method." (2007). Proposal# E12-07-109.
- 4. Afansev, A., et al. "Two-Photon exchange in elastic electron-proton scattering" *Prog. Part Nucl. Phy.* 95, 245 (2017)
- 5. Alsalmi, S., et al. "Measurement of the Two-Photon Exchange Contribution to the Electron-Neutron Elastic Scattering Cross Section." (2020).Proposal# E12-20-010

Nucleon Form Factors (FF)

- Electromagnetic FFs are some of the most basic observables of the nucleon
- Encodes internal electric charge and magnetic distributions of the nucleon
- Electromagnetic FFs are the Fourier transform of the charge/magnetic distributions
- Nucleons are the building blocks of ordinary matter in the Universe! Neutron Magnetic FF

Elastic Electron-Nucleon Scattering e^{-} e^{-} e^{-} e^{-} п п One Photon Exchange (OPE): Two Photon Exchange (TPE): Can calculate with Quantum Hard to calculate with QED & Electrodynamics (QED) Strong Interaction!

- Tool to probe internal structure of the nucleon
- From measuring the cross-section and comparing OPE, can extract TPE effects

7/18/23

Rosenbluth Separation for Nucleon FFs

$d\sigma =$	(α	$\left(-\frac{E'}{M}\right)^2 \left M_{\rm el}\right ^2$	$\sigma_{Mott} = -\sigma_{Mott}$	$= \left(\epsilon G_{r}^{2} \right) \left(C_{r}^{2} \right)$	$(0^2) + \tau G_{W}^2(0)$	(1^2)
$d\Omega$	$\langle 4MQ \rangle$	^{2}E	$\epsilon(1+1)$	τ) (ca_E (q		
$= \frac{\sigma_{Mc}}{\epsilon(1+$	$\frac{\sigma_{tt}}{\sigma_{r}}\sigma_{R} =$	$=\frac{\sigma_{Mott}}{\epsilon(1+\tau)}\left(\epsilon\sigma_{L}\right)$	$(+\sigma_T)$			

- $\frac{d\sigma}{d\Omega}$ is the differential Born cross-section for electronnucleon scattering, with invariant amplitude M_{γ} .
- α is the fine structure constant.
- σ_{Mott} is the scattering for a point-like particle.
- ϵ is the longitudinal polarization of the virtual photon.
- $\tau \equiv Q^2/4M^2$. *E* and *E'* are initial and final state energies.
- G_E and G_M are the Sachs Form Factors.
- Method used extensively for proton.
- nTPE experiment is first time this method used for neutron.
 Ezekiel W. Wertz 20/14

Proton Form Factor Discrepancy

- Two primary measurement methods:
 - 1. Rosenbluth Separation (Cross-Section data)
 - 2. Polarization Transfer
- G_E / G_M from Rosenbluth consistent with 1.0
- *G_E* / *G_M* from Polarization Transfer disagrees by 3-4 sigma
- Rosenbluth, identical spatial dependences.
- Polarization Transfer, proton's charge distribution is more spatially spread out than magnetization distribution.
- Rosenbluth sensitive to TPE, while Polarization Transfer is insensitive.
- TPE could explain discrepancy
- Understanding TPE effects gives more complete characterization of Nucleon FFs

7/18/23

Neutron Electric Form Factor

nTPE experiment (Rosenbluth)

Name	Ebeam (GeV)	BigBite angle (deg)	BigBite Distance (m)	SBS angle (deg)	SBS distance (m)	HCAL "angle" (deg)	HCAL distance (m)	Q^2 (GeV^2)	Electron P (GeV)	Nucleon P (GeV)
SBS-8	5.965	26.5	2.00	29.9	2.25	<mark>29.4</mark>	11.0	4.5	3.58	3.2
SBS-9	4.015	49.0	1.55	22.5	2.25	<mark>22.0</mark>	11.0	4.5	1.6	3.2

SBS G_E^n

Q^2	E_i	θ_e	p_e	θ_n	p_n
5.02	4.400	48.0	1.73	21.6	3.49
6.77	6.600	34.0	3.00	22.2	4.44
10.18	8.800	34.0	3.38	17.5	6.29

SBS G_E^n -RP

Setting	$Q^2 ({ m GeV/c})^2$	$E_e \; ({\rm GeV})$	$p_{e'}$ (GeV)	$\theta_e \ (\text{deg.})$	θ_n (deg.)
1	4.5	4.4	2.01	41.9	24.7
2	6.0	6.6	3.40	30.0	25.0
3	9.3	8.8	3.81	30.7	19.4

Super BigBite Spectrometer includes Super BigBite Magnet & Hadron Calorimeter (HCal) Deuteron Target & BigBite Spectrometer includes Gas Electron Multipliers (GEMs), GRINCH, Calorimeters, Timing Hodoscope

Hardware installation, commissioning, & expert shifts for GEM tracking detectors

Research Outlook: Last Year Plan

- *G*^{*n*}_{*M*} & nTPE data analysis & GEM analysis. **In-progress**
- GEM Expert support for *G*^{*n*}_{*E*} install & run. **Yes, expert shifts, RC**
- Technical Note for SBS GEMs. In-Progress
- Read nucleon FF & nTPE literature.
 Yes, Continuing
- Collect/Write material for theory related sections of thesis. Need to do
- Give talk at GHRS. Yes

- Do HUGs, Accepted for June 2023
- Attending talk, colloquia, seminars about nucleon FFs. Yes, Continuing
- Give talk at APS or DNP. Yes
 Focus: Preliminary Result, No
- Preliminary Result in 1 Year. Not Yet
- Poster at JLUO Annual Meeting Planning for June 2023, I'm an organizer
- Continue on understanding of big picture nucleon FF and nTPE physics

Gas Electron Multiplier (GEM)

Diagram of a typical GEM electrode

Diagram of a single GEM detector with Cartesian readout

- Type of gaseous ionization detector, reliant on electron avalanche and a subclass of detectors known as Micro-Pattern Gas Detectors (MPGDs).
- Used as tracking detectors, preamplification, drift chambers, time projection chambers, radio imaging.
- Single GEM detector gains typically are 10³ or 10⁴.
- Triple GEM detector effective gains typically are 10⁴ or 10⁵.
 7/18/23
 Ezekiel W. Wertz

Electric Field in the region of the holes of a GEM electrode

GEM Detectors for SBS Program

UVA UV-GEM Layer schematic and picture with RF shielding

- 4 INFN GEM layers prepared for SBS program
- 4 UVA UV-GEM layers prepared for SBS program
- 11 UVA XY-GEM layers prepared for SBS program
- 2 INFN GEM layers operated during G_M^n
- 2 UVA UV-GEM layers operated during G_M^n
- 2 more UVA UV-GEM layers moved to BigBite during G_M^n

UVA XY-GEM Layer schematic and picture without RF shielding

7/18/23

Measured Observable: $R_{observed} = \frac{N_{e,e'n}}{N_{e,e'p}}$, $N_{e,e'n} / N_{e,e'p}$ are detector yields for quasi-elastic neutrons/protons

• No free neutron target, so use deuterium. Taking ratios from double-arm experiment cancels many systematic effects (Durand/Ratio Method).

Nuclear & Radiative Corrections: $R_{corrected} = f_{corr} \times R_{observed}$

• Neutron & Proton in Deuteron are not free particles.

Relation to Cross-Sections: $R_{corrected} = \frac{\sigma_{Mott}^n \cdot (1+\tau_p)}{\sigma_{Mott}^p \cdot (1+\tau_n)} \times \frac{\epsilon \sigma_L^n + \sigma_T^n}{\epsilon \sigma_L^p + \sigma_T^p}$

$$R_{corrected,\epsilon_1} = R_{Mott,\epsilon_1} \times \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_1 \sigma_L^p + \sigma_T^p} \qquad \qquad R_{corrected,\epsilon_2} = R_{Mott,\epsilon_2} \times \frac{\epsilon_2 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^p + \sigma_T^p}$$

Physics result, σ_L^n and σ_T^n :

Consider ratio of $R_{corrected}$ for two values of ϵ and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$\begin{split} \mathbf{A} &\equiv \frac{R_{corrected,\epsilon_1}}{R_{corrected,\epsilon_2}} = \frac{R_{Mott,\epsilon_1} \times \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_1 \sigma_L^p + \sigma_T^p}}{R_{Mott,\epsilon_2} \times \frac{\epsilon_2 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^n + \sigma_T^n}} = \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \cdot \frac{\epsilon_2 \sigma_L^p + \sigma_T^p}{\epsilon_1 \sigma_L^p + \sigma_T^p} \cdot \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^n + \sigma_T^n} \\ &= \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \frac{\epsilon_2 S_c^p + 1}{\epsilon_1 S_c^p + 1} \cdot \frac{\epsilon_1 S_c^n + 1}{\epsilon_2 S_c^n + 1} = B \cdot \frac{\epsilon_1 S_c^n + 1}{\epsilon_2 S_c^n + 1} \\ &B = \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \times \frac{1 + \epsilon_2 S_c^p}{1 + \epsilon_1 S_c^p} \end{split}$$

Physics result, σ_L^n and σ_T^n :

Consider ratio of $R_{corrected}$ for two values of ϵ and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$A = B \cdot \frac{\epsilon_1 S_c^n + 1}{\epsilon_2 S_c^n + 1} = B \cdot \frac{\epsilon_1 S_c^n + 1}{\epsilon_2 S_c^n + 1} \cdot \frac{1 - \epsilon_2 S_c^n}{1 - \epsilon_2 S_c^n} = B \cdot \frac{1 + \epsilon_1 S_c^n - \epsilon_2 S_c^n - \epsilon_1 \epsilon_2 (S_c^n)^2}{1 + \epsilon_2 S_c^n - \epsilon_2 S_c^n - \epsilon_2 S_c^n - (\epsilon_2 S_c^n)^2} = B \cdot \frac{1 + \Delta \epsilon \cdot S_c^n - \epsilon_1 \epsilon_2 (S_c^n)^2}{1 - (\epsilon_2 S_c^n)^2} = B \cdot \frac{1 + \Delta \epsilon \cdot S_c^n - \epsilon_1 \epsilon_2 (S_c^n)^2}{1 - (\epsilon_2 S_c^n)^2}$$

From Proposal: Equal values of Q^2 for two kinematics, the τ and σ_T for two kinematics cancel. For actual small range of ϵ and small value of the slope. Does this get rid of the higher order ϵ terms and justify the approximation? Similar derivation and argument for *B*,

 $\Delta \epsilon = \epsilon_1 - \epsilon_2$

Physics result, σ_L^n and σ_T^n :

Consider ratio of $R_{corrected}$ for two values of ϵ and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$A \equiv \frac{R_{corrected,\epsilon_1}}{R_{corrected,\epsilon_2}} = B \times \frac{1 + \epsilon_1 S_c^n}{1 + \epsilon_2 S_c^n} \approx B \times (1 + \Delta \epsilon \cdot S_c^n)$$

From Data Proton Kinematic Physics Result!

Proton Global Data: From global analysis of *e-p* cross-section. Taken as known.

$$B = \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \times \frac{1 + \epsilon_2 S_c^p}{1 + \epsilon_1 S_c^p} \approx 1 - \Delta \epsilon \cdot S_c^p$$

Double Polarization Method for Neutron Electric FF

From a polarized electron beam on a polarized neutron target the elastic electron-neutron scattering cross section can be written as the sum of 2 parts:

- Σ is the unpolarized elastic cross section
- Δ is the polarized elastic cross section

• *h* is helicity (±1)

$$\tau \equiv Q^2/4M^2$$

$$\sigma = \Sigma + h\Delta$$

$$\theta$$
 is electron scattering
angle
Neutron Spin Asymmetry:

$$\theta^*$$
 is polar angle,

$$\phi^*$$
 is azimuthal angle
of target polarization
in lab frame

$$A_N = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\frac{G_E^n}{G_M^n}\sin\theta^*\cos\phi^*}{\left(\frac{G_E^n}{G_M^n}\right)^2 + \tau + 2\tau(\tau+1)\tan^2(\theta/2)} - \frac{2\tau\sqrt{1+\tau+(1+\tau)^2\tan^2(\theta/2)}\tan(\theta/2)\cos\theta^*}{\left(\frac{G_E^n}{G_M^n}\right)^2 + \tau + 2\tau(\tau+1)\tan^2(\theta/2)}$$

7/18/23

Data Analysis Part 3 SBS9 & SBS field 70%

Ezekiel W. Wertz

Data Analysis Part 4 SBS9 & SBS field 70%

Ezekiel W. Wertz

Data Analysis Part 5 SBS9 & SBS field 70%

SBS nTPE Extraction

Big Picture: While TPE has been studied for the proton, there is essentially no TPE data for the neutron. No free neutron target.

 $R_{n/p}$ is the ratio of quasi-elastic yields in scattering from a deuteron target. $N_{e,e'n}$ and $N_{e,e'p}$ are the quasi-elastic detector yields for neutrons and protons $N_{e,e'n}$

$$R_{n/p} \equiv R_{observed} = \frac{1}{N}$$

To extract the observed ratio from nucleons a correction $must^{N}e_{,e'}e'_{,p}$ occur to account for hadron efficiencies, radiative corrections, final state effects, and re-scattering

$$R_{corrected} = f_{corr} \times R_{observed}$$

In OPE *R*_{corrected} can be written

$$R_{corrected} = \frac{\sigma_{Mott}^{n} \cdot (1 + \tau_{p})}{\sigma_{Mott}^{p} \cdot (1 + \tau_{n})} \times \frac{\epsilon \sigma_{L}^{n} + \sigma_{T}^{n}}{\epsilon \sigma_{L}^{p} + \sigma_{T}^{p}}$$

Where $\sigma_{Mott}^{n(p)}$ is the Mott cross-section, $\tau_{n(p)} \equiv -q_{n(p)}^2/4M_{n(p)}^2$, ϵ is the longitudinal polarization of the virtual photon, $\sigma_L^{n(p)}$ and $\sigma_T^{n(p)}$ are the cross sections for longitudinally and transversally polarized virtual photons which are dependent on $G_E^{n(p)}$ and $G_M^{n(p)}$.

7/18/23

SBS nTPE Extraction

$$R_{Mott} = \frac{\sigma_{Mott}^n \cdot (1 + \tau_p)}{\sigma_{Mott}^p \cdot (1 + \tau_n)}$$

Consider $R_{corrected}$ for two values of ϵ and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$R_{corrected,\epsilon_1} = R_{Mott,\epsilon_1} \times \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_1 \sigma_L^p + \sigma_T^p} \qquad \qquad R_{corrected,\epsilon_2} = R_{Mott,\epsilon_2} \times \frac{\epsilon_2 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^p + \sigma_T^p}$$

Two unknowns are σ_L^n and σ_T^n . At Q² = 4.5 (GeV/c)² the value of S_c^p is known.

$$A = \frac{R_{corrected,\epsilon_1}}{R_{corrected,\epsilon_2}} = B \times \frac{1 + \epsilon_1 S_c^n}{1 + \epsilon_2 S_c^n} \approx B \times (1 + \Delta \epsilon \cdot S_c^n)$$

$$B = \frac{R_{Mott,\epsilon_1}}{R_{Mott,\epsilon_2}} \times \frac{1 + \epsilon_2 S_c^p}{1 + \epsilon_1 S_c^p} \approx 1 - \Delta \epsilon \cdot S_c^p$$

SBS nTPE Extraction

- Big Picture: While TPE has been studied for the proton, there is essentially no TPE data for the neutron
- No free neutron targets

Start: $R_{n/p}$ is the ratio of quasi-elastic yields in scattering from a deuteron target. $N_{e,e'n}$ and $N_{e,e'p}$ are the quasi-elastic detector yields for neutrons and protons.

$$R_{n/p} \equiv R_{observed} = \frac{N_{e,e'n}}{N_{e,e'p}}$$

Apply corrections for hadron efficiencies, radiative corrections, final state effects, and re-scattering. Call this ratio $R_{corrected}$, its proportional to $\sigma_L^{n(p)}$ and $\sigma_T^{n(p)}$.

Now fix $Q^2 = 4.5$ (GeV/c)² and consider two different kinematic points (ϵ_1 and ϵ_2).

Take a corrected ratio for each kinematic point, call them $R_{corrected,\epsilon_1}$ and $R_{corrected,\epsilon_2}$.

Consider the ratio of the two corrected ratios and define $S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)}$

$$A = \frac{R_{corrected,\epsilon_1}}{R_{corrected,\epsilon_2}} = B \times \frac{1 + \epsilon_1 S_c^n}{1 + \epsilon_2 S_c^n} \approx B \times (1 + \Delta \epsilon \cdot S_c^n)$$

B only contains known proton information. End: Two unknowns are σ_L^n and σ_T^n , which can be extracted.

7/18/23