SBS Collaboration Meeting 2023

Research Update

Sebastian Seeds

July 12, 2023 Jefferson Lab

Topics

- Pass 2 Calibrations
 - Software
 - Status
- Utility
 - Data parsing
 - \circ HCal
- HCal GMn Performance
 - \circ Resolution
 - TDCs and Timing
- HCal Detection Efficiency
 - Anticut method
 - dx direct method
- Current Work
 - GMn/nTPE
 - Documentation

п	Namo	Oct, 21	Jan, 22					Jan, 23			Jan, 24
ID.	Name	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
5	▼ GMn/nTPE Preliminary									6	
6	Pass 0/1 Calibrations						1				
7	Pass 2 Calibrations					•]				
8	Updates to G4SBS/SBS-Offline										
9	Quantify Uncertainty										
10	Preliminary GMn/nTPE								5		

*Estimated, simplified timeline

Pass 2 Calibrations - Software

- HCal written and configured
 - Alpha Parameters
 - Cosmic Gain and HV
 - HCal energy (discussed later)
 - HCal timing (discussed later)
 - SBS-Offline timewalk (*sbs.hcal.tdc.tw*) and cluster block dt max (*sbs.hcal.tmax*)
- Monte Carlo configured
 - e' momentum
 - Electron arm optics

LED Single Intensity Alpha Parameter Extraction MAX B12-C1 LED1: coeff=20.1458 alpha=21.037292 rChiSor=129.249836 450 400 ŝ MAX R12-C6 LED1: coeff=52.8123 alpha=6.002688 rChiSqr=108.130066 RAU) 300 250 7 200 ADC 150 1500 1550 1600 PMT HV Setting (-V) 1500 1600 1700 1800 1900 PMT HV Setting (-V)

*SBS 8 MC calibration progress courtesy JBoyd and APuckett

Data Parsing

- Runs over all GMn data from a given kinematic with wide elastic cut effects
- Produces output tree with far fewer branches, same total events, single root file
- Can be found here:

https://github.com/sebastianseeds/SBS-ana/blob/main/analysis/gana/parse_sh.C

- Wide elastic cuts can be found here: <u>https://github.com/sebastianseeds/SBS-ana/blob/main/src/etune.C</u>
- Word of caution: elastic selection requires judicious HCal cluster selection not included in this analysis (primary cluster only here) *prior to completion of pass 2 (at least), this tool is best used as a diagnostic*

Branch	DESCRIPTION
dx	HCal expected vertical position - HCal detected vertical position
dy	HCal expected horizontal position - HCal detected horizontal position
W2	Invariant mass squared (GeV) ²
Q2	Inverse four-momentum transfer squared (GeV) ²
nu	Energy transfer or KE of scattered nucleon
hcale	Measured primary cluster energy in HCal
pse	Measured preshower energy
she	Measured shower energy
ер	Reconstructed e' momentum
eoverp	e' energy over e' momentum
hcalatime	HCal ADC time, primary block, primary cluster
hodotmean	Hodoscope TDC cluster mean time
$thetapq_p$	Proton scattering angle
thetapq_n	Neutron scattering angle
mag	SBS magnetic field setting
run	Run number
tar	Target
failedglobal	Indicates if global cuts would have cut the event
failedaccmatch	Indicates acceptance matching between e-arm and h-arm
failedcoin	Indicates HCal ADC time cut

Example - dx from the tree with wide elastic cuts selecting deuterium at SBS field 50%

HCal Utility

- Event Displays
 - Full waveform all channels
 - Cluster elements only added analysis utility
- Proton Spot timing only for commissioning
- TDC Efficiency Calculates TDC signal efficiency with various reconstruction schema
- Internal timing Estimates timing resolution

General Software Map with Locations

H	ANALYSIS	SCRIPT(S)	DESCRIPTION	LOCATION
	Alpha Extraction	alpha_extraction.C LED_spectral_analysis.C	Builds spectra from single LED intensity over many channels and several HV to extract alpha gain parameter per PMT	On CH: adaqfs/home/a-onl/sbs/hcal.devel
	Cosmic Gain Matching	$cosmic_gain_match.C$	Via waveforms and alphas, extracts pedestal, pedestal subtracts, builds PMT spectra, gives target HV and maps to .set rpi format	On CH: adaqfs/home/a-onl/sbs/hcal.devel
	Energy Calibrations	ecal.C	Gives gain parameters for database from in-beam event clusters in HCal and expected elastic energies from e-arm	$ \begin{array}{l} On \ git: \\ github.com/sebastianseeds/HCal_replay/tree/main/hcal/hcalCalibration/SBS \end{array} $
	Timing Calibrations	adct_align.C tdc_align.C tdc_tw.C	Aligns HCal TDC/ADC time signals with loose elastic cut spectra. Also extracts timewalk corrections for TDC spectra. Gives params for database	$ \begin{array}{l} & \text{On git:} \\ & \text{github.com/sebastianseeds/HCal_replay/tree/main/hcal/hcalCalibration/SBS} \end{array} \\ \end{array} $
	Other HCal Analysis	sfracMC.C simTOF.C hcaltdc.eff.chainC.C elas.C htres.C	 Obtains expected sampling fraction from MC Obtains time of flight corrections as a function of scattered elastic/quasi-elastic nucleon momentum Calculates TDC efficiency given loss of HCal TDC signals in GMn Uses only timing to resolve elastic protons in HCal Uses cluster members to estimate best possible HCal TDC resolution 	$\label{eq:constant} On git: github.com/sebastianseeds/HCal.replay/tree/main/hcal/hcalCalibration/GMn github.com/sebastianseeds/HCal.replay/tree/main/hcal/analysis/TOF github.com/sebastianseeds/HCal.replay/tree/main/hcal/analysis/TDCsigloss github.com/sebastianseeds/HCal.replay/tree/main/hcal/analysis/protonDisplay github.com/sebastianseeds/HCal.replay/tree/master/analysis/hta github.com/sebastianseeds/SBS-ana/tree/master/analysis/hta github.com/se$
	HCal Utility	replay_hcal_SAS_general.C display_v2.C clusDisplay_HCal.C	 General HCal replay with all branches enabled (full waveforms) Event by event full waveform display with GUI Event by event cluster waveform display including expected nucleon location and cluster search region 	On git: github.com/sebastianseeds/HCal_replay/tree/main/hcal/replay github.com/sebastianseeds/HCal_replay/tree/main/hcal/displays

GMn Performance - Energy

HCal Cluster E / Hadron KE (%)

12

10

0 SBS-4

8.0 (GeV)

0.6

0.5

0.4

0.3

0.2

0.1

SBS-7

SBS-11 SBS-14

SBS-8 SBS-9

ш 0.7

- Calibrations (nearly complete for current pass)
 - Integrated ADC (pC) \rightarrow E (GeV) via χ^2 minimization on linear system
 - Relate total hadron E (from BB) to cluster elements with sampling fraction (MC)

- Post-calibration
 - MC and data agree well over all kinematics
 - Energy resolution trends towards better resolution at higher Q²

KINEMATIC	4	7	11	14	8	9
Beam Energy (GeV)	3.739	7.931	9.889	5.983	5.983	4.027
HCal Angle (deg)	31.9	16.1	13.3	17.3	29.4	22.0
Recoil Nucleon Central KE (GeV)	1.62	5.26	7.22	3.98	2.40	2.40
HCal Energy Resolution (%)	67	42	41	41	55	45

GMn Performance - Position

- Delta plots
 - Difference between cluster centroid and expected nucleon location in dispersive (vertical, X) and non-dispersive (horizontal, Y)
 - dx/dy RMS: HCal spatial resolution
- Simulated (no target)
 - PAC expected: proton / neutron generator with 4x4 clusters
 - This work: proton / neutron generator with 4x4 clusters, data digitization, and replay
- Expected / Data (preliminary)
 - Position will be impacted by nucleon momentum and SBS field

*PAC35, Juan-Carlos Cornejo

MC Y Res

6.27

7.50

MC X Res

6.10

5.93

X RES

5.94

5.34

KINEMATIC

SBS 4

SBS 8

Y Res

6.46

6.12

GMn Performance - Timing

- Corrections passed per event (channel 161 shown, SBS4)
 - Time-of-flight (TOF): order-3 polynomial fit to nucleon momentum 0 from MC

36331

-86.57

11.51

2622 / 296

2216 ± 16.

-86.99 ± 0.02

allcorr p ID

1851

-112

12.62

1667/319

2162 ± 23.8

 -112.6 ± 0.0

 1.663 ± 0.013

- Timewalk (TW): exponential fit to integrated ADC per block Ο
- Trigger: difference with e-arm hodoscope cluster mean time 0
- All channel TDC RMS (HCal active area): 1.7 ns 0

GMn/nTPE Physics Deliverables

- *R*" is the experimental observable and the form factor ratio (FFR) on deuterium
 - Requires simultaneous measurement of protons and neutrons with known detection efficiency
 - Durand technique or "ratio" technique cancels systematic error, but in HCal we need:
 - Uniformity in detection efficiency
 - Proton / neutron efficiency ratio near unity
- With nuclear corrections, get R', then extract GMn!

*SBS4 Data, all

HCal E dep vs neutron momentum

Detection Efficiency (MC)

- Extraction of expected detection efficiency from MC
 - Simulate protons and neutrons with momentum 1-9 GeV, throw flat, populate 1000 ev/ch
 - Get energy spectra v nucleon momentum, fit peaks to extract mean E per bin p
 - Sum events per bin passing E_{mean} / 4 threshold (*pass*)
 - Sum all events per bin (*total*)
 - Efficiency: (pass) / (total) *100
- Digitized and replayed simulations are consistent with proposal

Detection Efficiency: dy Anti-cut Method

- Methodology
 - Focus on protons from liquid hydrogen (*LH2*) with high signal to noise (*SBS* 4, high elastic yield / C, relatively low Q^2)
 - Account for best clusters
 - Per event, select hcal cluster which minimizes θ_{pq} of elastic hadron with loose coin cut
 - Expected number of elastics from W²
 - Populate *"full"* histogram with acceptance matching cut only
 - Get "pure" elastic sample from cuts on both arms (shape only, elastic cuts)
 - Fit "total" histogram to scaled elastic sample and polynomial for background
 - Subtract background from *"full"* histogram to obtain *expected* elastics
 - Detected elastics from W² with harm anticut
 - Populate "anticut" histogram with acceptance matching cut and HCal dx/dy anticuts
 - Follow red steps above to extract *missed* elastics
 - Detected elastics: expected missed
 - HCal Detection Efficiency: Detected / Expected

SUBSYSTEM	Type	Cut
BigBite	Acceptance	x/y expected HCal active area
BBCal	Preshower Energy	$>200 { m MeV}$
Tracking	Number Tracks	1
GEMs	Hits	>3 planes
BBCal	Total E	>1.7 GeV
HCal	ADC Time	$<5\sigma$
Physics	θ_{pq}	<0.4 rad
HCal	dy	$<3\sigma$

Proton Detection Efficiency

- HCal Detection Efficiency (HDE) with anti-cut method: 98%
- MC expected: 94%

Detection Efficiency: dx Direct Method

- Methodology
 - Consider again LH2, SBS 4
 - Account for best HCal clusters
 - Per event, select hcal cluster which minimizes O_{pq} of elastic hadron with loose coin cut
 - Expected number of elastics from W²
 - Populate *"full"* histogram with acceptance matching cut only
 - Get "pure" elastic sample from cuts on both arms (shape only, elastic cuts)
 - Fit "total" histogram to scaled elastic sample and polynomial for background
 - Subtract background from *"full"* histogram to obtain *expected* elastics
 - Detected elastics from dx with elastic cuts
 - Populate *dx* histogram with same elastic cuts, minimum HCal energy cut, and cluster selection
 - Follow red steps above with dx histogram to extract detected elastics
 - HCal Detection Efficiency: Detected / Expected

SUBSYSTEM	Type	Cut
BigBite	Acceptance	x/y expected HCal active area
BBCal	Preshower Energy	$>200 { m MeV}$
Tracking	Number Tracks	1
GEMs	Hits	>3 planes
BBCal	Total E	$>1.7~{\rm GeV}$
HCal	ADC Time	$<5\sigma$
Physics	θ_{pq}	<0.4 rad
HCal	dy	$<3\sigma$

Proton Detection Efficiency

- HCal Detection Efficiency (HDE) with dx-direct method: 98%
- MC expected: 94%
- Testing robustness of result with other analyses, other kinematics, and systematic studies on cluster selection

Current Work

- GMn extraction
 - Implementation of new SBS field corrections and RC
 - Systematic studies on cut variables
- nTPE extraction and uncertainty estimation
- HCal Documentation / NIM paper
- Thesis!
 - Aim to graduate in *December 2023*

Document	DESCRIPTION	ESTIMATE
HCal NIM	Research paper detailing the design, construction, commissioning, calibration, and performance of HCal	50%
HCal Instructions	General HCal document containing technical software and hardware information	-
HCal Calibration Instructions	Documentation of current calibration software, calibration theory, and use instructions	90%
HCal Calibration Results	Pass 2 calibration results and quality checks	80%
HCal GMn Change Record	Record of all hardware changes during GMn commissioning and experiment	100%
HCal GEn Change Record	Record of all hardware changes between GMn and GEn and during GEn commissioning and experiment	10%
Thesis Proposal	Proposed thesis topic, theory, milestones, and timeline	100%
Thesis	Dissertation including HCal commissioning/calibration, MC results/expectations, and preliminary GMn/nTPE results	30%

Current Work

- GMn extraction
 - Implementation of new SBS field corrections and RC \bigcirc
 - Systematic studies on cut variables \bigcirc
- nTPE extraction and uncertainty estimation
- HCal Documentation / NIM parQuestions?
- - Aim to graduate in December 2023 \bigcirc

Document	DESCRIPTION	Estimate
HCal NIM	Research paper detailing the design, construction, commissioning, calibration, and performance of HCal	50%
HCal Instructions	General HCal document containing technical software and hardware information	
HCal Calibration Instructions	Documentation of current calibration software, calibration theory, and use instructions	90%
HCal Calibration Results	Pass 2 calibration results and quality checks	80%
HCal GMn Change Record	Record of all hardware changes during GMn commissioning and experiment	100%
HCal GEn Change Record	Record of all hardware changes between GMn and GEn and during GEn commissioning and experiment	10%
Thesis Proposal	Proposed thesis topic, theory, milestones, and timeline	100%
Thesis	Dissertation including HCal commissioning/calibration, MC results/expectations, and preliminary GMn/nTPE results	

Backup - TDC over all blocks

• All data from SBS8, primary block in cluster, block 161 (center of acceptance)

HCal ADC time: Performance of various fits to waveforms (continued)

From these results, the following steps were taken:

- Gaussian Landau convolution fits are removed. After tuning FFT points with SetNofPointsFFT() to attempt to improve processing time, no acceptable limit is possible with sufficient data. Other, more efficient methods to return a convolution fit may exist.
- Threshold methods to obtain rising edge are effective and should be more accurate than methods that rely on the spread in the data and are thus dependent on the amplitude of the signal.
- Where both landau (L) and skewed gaussian (SG) rising edge values exist, alternative atime (AAt) over analyzed data is the rising edge from either L or SG is added to output tree for comparison with current tree atime.
- If neither L or SG rising edge can be obtained, AAt defaults to current tree atime (with batime in black).

The following plots are over three runs (11589, 11590, 11592) from SBS4 LH2 data (block 161, wide elastic cuts) with no further corrections (hodo, ToF, etc.) applied. The fit is applied to **batime**. No substantial improvement is observed on **batime** (or independent landau and skewed gaussian distributions as compared to **atime**).

batime/4 {W2<1.2&&W2>0.8&&failedglobal==0&&failedaccmatch==0&&pblkid==161}

Backup - HCal Specifications

HARDWARE	PURPOSE	SPECIFICATION		
Module	Facilitate hadron showers, provide segmentation for position	40 layers alternating steel/scintillator, 1 WLS, 1 custom light guide, 1 PMT (15cm x 15cm x 1m)		
Scintillator	Transduce hadron KE	PPO 2,5-Diphenyloxazole:		
Schuthator	to gamma	fluor, peak 385nm		
Wavelength	Shift gamma to	St. Gobain BC-484: 3ns decay;		
Shifter (WLS)	PMT peak detection efficiency	peak abs. 375nm; peak emi. 484nm		
PMT	Transduce gamma to signal	192 12-stage "CMU" Photonis XP2262, 96 8-stage "JLAB" Photonis XP2282 (center third columns)		
ADC	Analog-to-digital conversion (per module)	fADC250: 2V dynamic range; 250 MHz (4 ns bins)		
TDC	Time-to-digital conversion (per module)	F1TDC: Multi-hit; 800 ns dynamic range		

Backup - TOF fits over all kinematics

Polynomial order 3 fits to MC time-of-flight vs nucleon momentum

Neutron Time of Flight vs Momentum, SBS7

Neutron Time of Flight vs Momentum, SBS11

Backup - HDE simple fits

- Simulate *expected* efficiencies
 - Threshold: E peak/4 0
 - Complete for all kinematics Ο
 - Proton (LH2 target)
 - Extract expected elastics using e' track cuts and HCal Ο active area cuts only

 $eff. = \frac{N_{ev_over_threshold}}{N_{ev_over_threshold}}$

- Extract detected elastics from HCal dispersive delta plot Ο "dx" fits
- Ratio detected/expected is observed eff. Ο
 - 95.3%
- We will check these results against the MC • detection efficiencies for f_{corrected}

Jefferson Lab