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Outline

• Overview of double-spin asymmetry technique for 𝐺!"/𝐺#"
• SBS GEN overview
• Differences between GMN and GEN analyses
• Comparison between E02-013 (”GEN-1”) and E12-09-016 

(“GEN-2”)
• Issues and challenges for GEN-2 analysis
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Polarization Observables in Elastic 𝑒𝑁 → 𝑒𝑁 Scattering
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Standard coordinate system and 
angle definitions for nucleon 

polarization components in 𝑒𝑁 → 𝑒𝑁 

<latexit sha1_base64="KJemOi0b0BVmVIEMKZTE6w6RUN8="></latexit>

AeN ⌘ �+ � ��
�+ + ��

= PbeamPtarg [At sin ✓
⇤ cos�⇤ +A` cos ✓

⇤]

At = �
r

2✏(1� ✏)

⌧

r

1 + ✏
⌧ r

2

A` = �
p
1� ✏2

1 + ✏
⌧ r

2

r ⌘ GE

GM

• Polarized beam-polarized target double-spin asymmetry or 
polarization transfer observables in OPE are sensitive to the 
electric/magnetic form factor ratio, giving enhanced sensitivity to 
𝐺! 𝐺"  for large (small) values of 𝑄#, as compared to the Rosenbluth 
method
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Target spin is 
oriented to measure 
this asymmetry in 
3He(e,e’n)!



Neutron FFs—GEN
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• Left (from Obrecht et al., in preparation): 𝐺!$ from polarization observables (color-coded by observable): 
Polarized Helium-3 target asymmetry, Deuteron recoil polarimetry, Polarized deuterium target asymmetry.
• See Freddy Obrecht Ph.D. thesis: https://opencommons.uconn.edu/dissertations/2045/ 

• Right: GEN world data with projected SBS results, including already-collected Helium-3 data at 3 and 6.5 
GeV2	
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https://opencommons.uconn.edu/dissertations/2045/
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GEN in g4sbs: Overview

Electron arm: BigBite 
spectrometer

Hadron arm: SBS 
with/HCAL

GEn-II high-luminosity 
polarized Helium-3 Target

Detailed downstream beamline 
description: credit Sebastian Seeds 

(UConn) and David Flay (JLab) 



GEN simulations: nucleon charge ID
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SBS dipole: 
∫𝐵𝑑𝐿 = 1.7	𝑇 ⋅ 𝑚

GEN-II highest 𝑄# = 10.2	𝐺𝑒𝑉#: 
𝑝%&'()*$ = 6.3	𝐺𝑒𝑉/𝑐

Proton vertical deflection 
at HCAL: ~1.1 m

In this event, we have generated both a 
proton and a neutron with identical 
quasi-elastic kinematics and tracked 

them through the simulation

proton

neutron



Key differences between GMN/GEN experiments/analyses
• For GEN, we don’t care about precise knowledge of HCAL detection 

efficiency or acceptanceàmain interest is (e,e’n) asymmetry
• Always operate at SBS maximum field to achieve maximum n/p separation
• Use coincidence trigger between HCAL and BigBite to reduce event and data rate

• Set HCAL as far from target as possible to maximize TOF resolution of 
neutron velocity (without reducing acceptance)
• Goal is to select quasi-elastic (e,e’n) events with smallest possible 

contamination (however, statistics are extremely challenging, so we 
can’t use arbitrarily tight cuts!)
• Fermi smearing on 3He significantly worse than on 2H à Inelastic 

contamination is a much more significant problem for physics analysis 
(however, inelastic asymmetries will be measured much more precisely 
than elastic), ESPECIALLY at large Q2
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Quasi-elastic Event Selection in MC (𝑄! = 10.2	𝐺𝑒𝑉!)

7/17/23 SBS Collaboration Meeting 8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 (GeV)

miss
p

0.000

0.001

0.002

0.003

0.004

0.005

ra
te

/b
in

 (H
z)

He(e,e'n)3

He(e,e'p)3

• np separation for quasi-elastics based on missing 
perp. momentum
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• Elastic
• Inelastic

• PRELIMINARY: For 𝑊# < 1.6 GeV2, we estimate 
fractional inelastic contamination of 26 ± 8% 
(consistent with original proposal estimate of 
~25%) assuming TOF resolution of 1 ns, after cuts.

• Inelastic asymmetry can be measured precisely and 
corrected for; with much higher statistics than 
elastic asymmetry

• Expected contamination from quasi-elastic 
protons negligible for canonical cut of 𝑝+ < 0.1 
GeV



GEN-1 versus GEN-2 
See Freddy Obrecht thesis: 
https://opencommons.uconn.edu/dissertations/2045/ 
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Experiment E02-013 (GEN-1) layout (in GEANT4)
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E02-013 Kinematics: lowest Q2 not included in PRL 
2010 publication



Electron and Nucleon Detection
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Quasi-elastic Event Selection: 3He data, Q2 = 1.16 GeV2
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• Nucleon identification and momentum 
reconstruction via time-of-flight

• Three main cuts to select the coincidence quasi-
elastic channel: Invariant mass W, missing 
parallel and perpendicular momentum, and 
”missing mass” • W distribution before and after cuts

Q2 = 1.16 GeV2
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Quasi-elastic coincidence event selection: All kinematics
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• Width of quasi-elastic W distribution due to Fermi smearing increases with Q2. 
• Inelastic scattering yield relative to quasi-elastic also increases with Q2. 
• Nevertheless, two-arm coincidence and exclusivity cuts result in a very clean selection of QE 

events at all four Q2



Raw Asymmetries
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Raw asymmetry to ”physics” asymmetry—Summary of  Dilution 
Factors/Corrections
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• Most significant dilution factors: 
• Accidental coincidence background
• Nitrogen dilution
• Proton misidentification

• Others include FSI, inelastic contamination, 
and BigBite pions. The latter two are 
basically negligible for GEN-1



Nuclear corrections—Mainly FSI
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• Nuclear corrections calculated within Generalized Eikonal 
Approximation framework
• Cross section/asymmetry calculation code provided by 

Misak Sargsian (FIU)
• Event-by-event MC simulation folded with experimental 

acceptance—lots of numerical integration, 
computationally expensive! (Much easier to do with 2019 
JLab scientific computing facilities than 2009)

• A: PWIA
• B: FSI/charge-exchange
• C: Meson Exchange Currents
• D: Isobar Configurations
• Diagrams “A” and “B” dominant in E02-013 kinematics
• Exclusivity selection increases effective neutron polarization 

from the canonical 86% (of PHe) in the inclusive case to 96% in 
the coincidence—quasi-elastic case.



Table of corrections, GEN-1 data

Figure from Obrecht et al., (in preparation)
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GEN-2 vs GEN-1 key differences and challenges
• In principle, GEN-2 proton dilution due to misidentification as neutron 

should be much less than in GEN-1 due to magnetic deflection of 
protons
• In practice, we will still need to worry about this, due to very 

significant inelastic contamination (inelastic protons can look like 
neutrons) and ~6X higher proton yield from 3He compared to neutron 
yield (~3X larger cross section and two protons in Helium-3 to one 
neutron), Fermi motion, and reduction (enhancement) of n (p) 
acceptance due to HCAL vertical offset above beam height
• Time-of-flight resolution with HCAL not as good as BigHand, and high-

Q2 nucleons have 𝛽 → 1, worse resolution of missing parallel (and perp) 
momentum
• Statistics are extremely challenging due to very small elastic cross 

section
• Target and beam polarimetry and target spin orientation à similar 

systematics.
• Physics results will most likely be statistics limited for Kin. 3 and Kin. 

4
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Backups
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GEN Optics calibration (by Holly)
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https://sbs.jlab.org/cgi-
bin/DocDB/private/ShowDocument?docid=344 

Polarized Helium-3 Cell

Carbon Foils

e- beamReference Cell for H2, N2, 
unpolarized He-3, etc.

• Lessons learned from GMN experience allow “pretty good” 
starting optics model for BigBite from simulation

https://sbs.jlab.org/cgi-bin/DocDB/private/ShowDocument?docid=344
https://sbs.jlab.org/cgi-bin/DocDB/private/ShowDocument?docid=344

