The K_{LL} experiment

Arun Tadepalli – Jefferson lab (on behalf of the WAPP collaboration)

The spokespersons

John Arrington

Andrew Puckett

Arun Tadepalli

Bogdan Wojtsekhowski

WAPP Collaboration: ~60 Collaborators from ~20 institutions

Scientific goals of WAPP I & II

The goal for the pioneering measurement of the polarization transfer observable A_{LL} for single π^- photoproduction in the wide-angle regime is to address the following questions:

- What is the nature of the interaction mechanism of meson photoproduction from the nucleon at $s, -t, -u \gg \Lambda_{QCD}^2$?
- Does the twist-3 contribution dominate the twist-2 contribution in the wide angle regime, as suggested by the updated handbag mechanism cross section calculations?

We propose to measure A_{LL} for negatively charged pion photoproduction in the wide angle regime by using the SBS as the proton arm and BB as the pion arm. There, three aspects will be tested:

- 1. Does A_{LL} equal $-K_{LL}$?
- 2. Does A_{LL} have any dependence on cm. angle at $s=9~{\rm GeV^2}$ and large $-u,\,-t$?
- 3. Does A_{LL} have any s dependence at s > 9 GeV²?

Pion photoproduction in the wide angle regime

- Wide angle pion photoproduction is an interesting and a powerful took to study the interaction mechanism in the wide angle regime
- Calculations with twist 2 only fall short by two orders of magnitude
- Twist 3 contributions performed for π^0 are not only important but dominant in the wide angle regime
- A solution (handbag approach in the framework of GPDs) has been proposed
- An independent test of the polarization observables A_{LL} and K_{LL} is timely and necessary

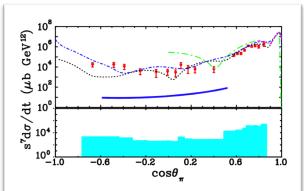


FIG. 5. Differential cross section of π^0 photoproduction. The CLAS experimental data at $s=11~{\rm GeV}^2$ are from the current experiment (red solid circles). The plotted uncertainties are statistical. The systematic uncertainties are presented as a shaded area in the subpanel. The theoretical curves for the Regge fits are the same as in Fig. 4 and the Handbag model by Kroll *et al.* [12] (blue double solid line).

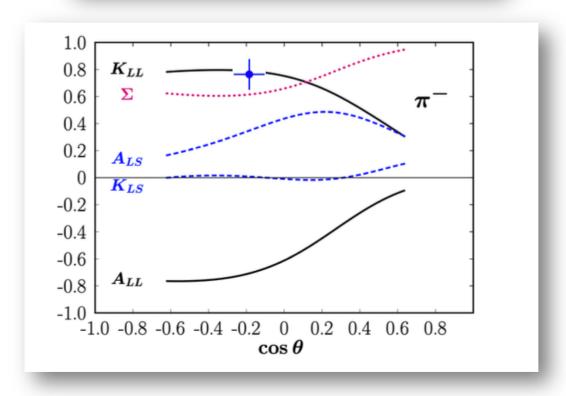
$$A_{LL}^{twist-2} = K_{LL}^{twist-2}$$

$$A_{LL}^{twist-3} = -K_{LL}^{twist-3} \label{eq:alpha}$$

$$K_{LL} = \frac{d\sigma(+, \to) - d\sigma(-, \to)}{d\sigma(+, \to) + d\sigma(-, \to)}$$

$$A_{LL} = \frac{d\sigma(+\to) - d\sigma(-\to)}{d\sigma(+\to) + d\sigma(-\to)}$$

Helicity correlation observables


- Helicity correlations A_{LL} and K_{LL} provide tests of the handbag mechanism
- Twist 3 contribution dominates twist 2
- Predictions made for π^0 and π^-

$$A_{\mathrm{LL}}^{twist-2} = K_{\mathrm{LL}}^{twist-2}$$
 $A_{\mathrm{LL}}^{twist-3} = -K_{\mathrm{LL}}^{twist-3}$

E_{γ}	< s >	<-t>	<-u>	$K_{_{LL}}$	$K_{_{LS}}$
GeV	$(\text{GeV}/c)^2$	$(\text{GeV}/c)^2$	$(\text{GeV}/c)^2$	accuracy	accuracy
4.5 - 5.5	9.3	4.6	2.9	± 0.05	± 0.05

$$K_{LL} = \frac{d\sigma(+, \to) - d\sigma(-, \to)}{d\sigma(+, \to) + d\sigma(-, \to)}$$

$$A_{LL} = \frac{d\sigma(+\to) - d\sigma(-\to)}{d\sigma(+\to) + d\sigma(-\to)}$$

$$4.0 \le E_{\gamma} \; (\mathrm{GeV}) \le 6.6$$
 $E_{e} = 6.6 \; \mathrm{GeV}$
 $\langle s \rangle = 9.3 \; \mathrm{GeV}^{2}$
 $\langle -t \rangle = 4.6 \; \mathrm{GeV}^{2}$
 $\langle -u \rangle = 2.9 \; \mathrm{GeV}^{2}$
 $\langle \cos (\theta_{CM}) \rangle = -0.22$

Acceptance-averaged
 Mandelstam variables are all
 sufficiently "large" for
 applicability of the handbag
 approach

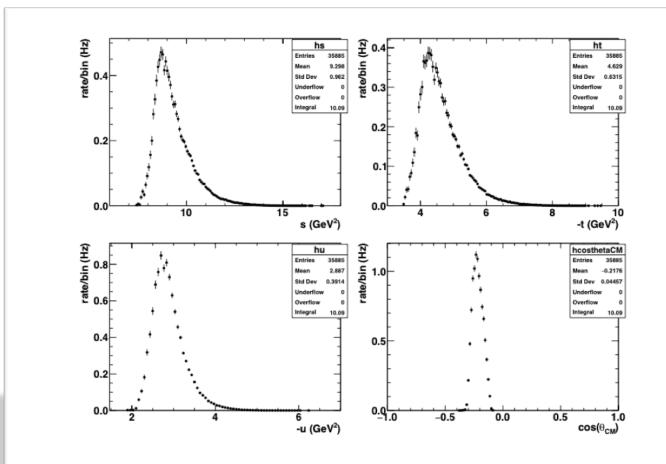


Figure 11: Distributions of s, -t, -u, and $\cos \theta_{CM}$ within the combined BigBite-SBS acceptance, from g4sbs, the SBS GEANT4-based Monte Carlo simulation package. See text for details.

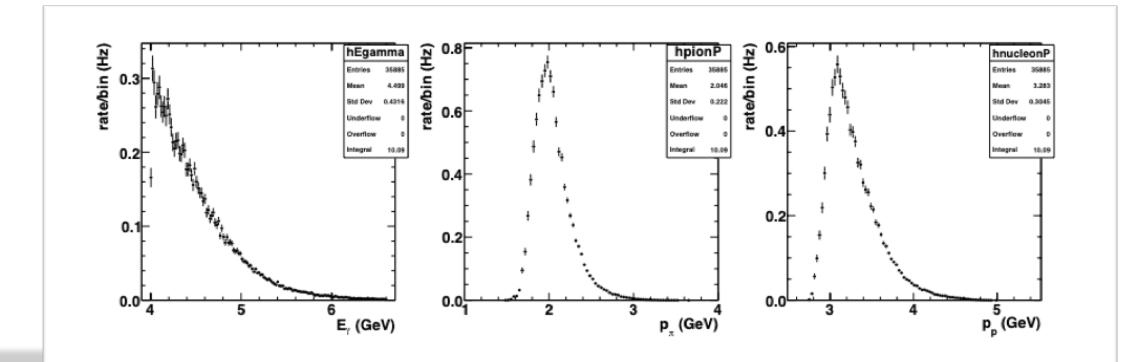
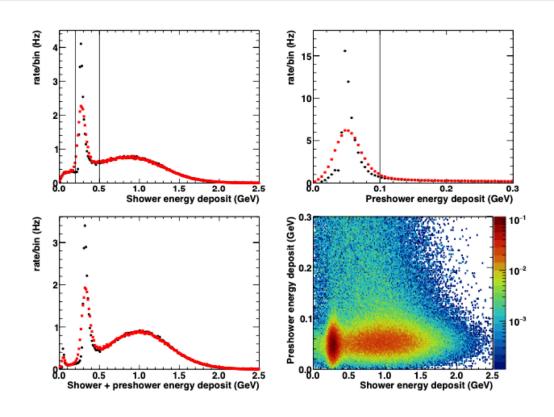
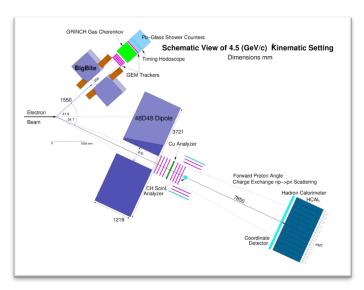


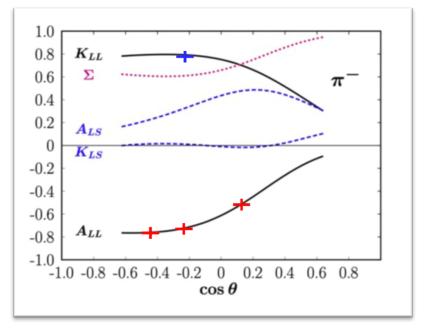
Figure 12: Distributions of E_{γ} , the incident photon energy, p_{π} , the π^- momentum in BigBite, and p_p , the proton momentum in SBS. Note that 4 GeV was the lower limit placed on E_{γ} for "signal" event generation.

$$s^7 \frac{d\sigma}{dt} (\gamma p \to \pi^+ n) = 0.828 \times 10^7 (1-z)^{-5} (1+z)^{-4} (\text{nb/GeV}^2 \cdot \text{GeV}^{14})$$

Energy deposition in the preshower and shower

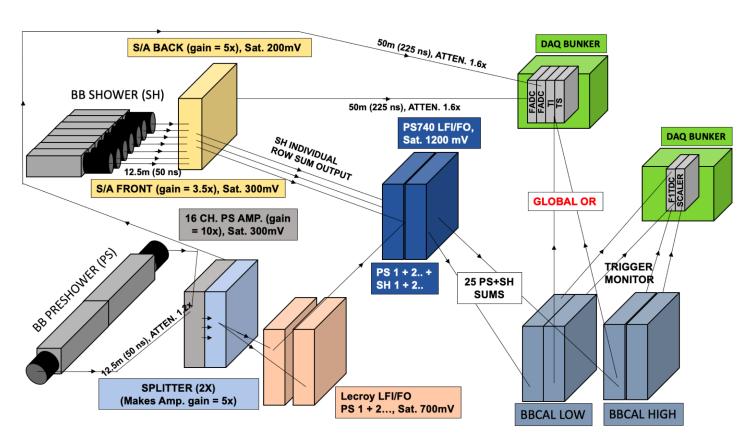
- GEn-RP trigger designed to have increased e⁻ efficiency
- Threshold cuts have to be applied on at the trigger level to suppress e⁻ and increase pion detection efficiency
- Need to demonstrate the feasibility of such a configuration change


Figure 13: Simulated preshower and shower energy depositions by good signal π^- , illustrating the BigBite trigger logic for charged pions. Black circles represent the "true" energy depositions, while red squares represent the energies smeared by the calorimeter energy resolution. Top Left: shower energy deposition. The vertical lines at 0.2 GeV and 0.5 GeV represent possible thresholds. Top Right: preshower energy deposition, illustrating dominant minimum-ionizing peak. The vertical line illustrates the "veto" threshold above which triggers will be rejected, as they are predominantly electron and photon-induced. Bottom left: Sum of shower and preshower for good signal π^- . Bottom right: correlation between preshower and shower signals, smeared for detector resolution.

Experimental setup and projections

- 2 PAC days of 6.6 GeV electron beam (photons in the range 4.0-6.0 GeV) for K_{LL} to reach 5% statistical uncertainty
- LD2 target with 6% Cu radiator upstream
- BigBite as the e- arm and the SBS as the nucleon arm
- No spectrometer changes required going from GEn-RP to KLL which reduces overhead


Experimental setup for K_{LL}

Projections for A_{LL} and K_{LL}

Trigger setup (what's implemented and readily available?)

- BBCALLO
 - Has remotely programmable thresholds
- BBCALHI (copy of trigger from BBCAL but could be set at a different threshold)
 - Need to setup a raspberry pi to remotely adjust and monitor the thresholds but should be easy to implement
- BBCALLO in VETO with BBCALHI already setup by Mark Jones but has not been commissioned
- This trigger setup could be used or a firmware based trigger could be implemented

Schematic of trigger setup for BBCAL

Target

 A 15 cm deuterium target with a radiator was already present during GMn running

 Need to remind Dave Meekins to implement it back onto the target ladder

Hall A Target Configuration October 2021 to February 2022

Jefferson Lab Thomas Jefferson National Accelerator Facility

3 Target list and lifter positions

The following lifter positions were determined by alignment of the system.

Target name	Lifter position	Target Material	
Loop 1 15 cm + Rad#1	34,823,321	10 cm Loop 1	
Loop 1 15 cm	31,040,225		
Loop 2 15 cm + Rad#2	27,172,761	10 cm Loop 2	
Loop 2 15 cm	23,389,665		
Loop 3 15 cm + Rad#3	19,532,441	10 cm Loop 3	
Loop 3 15 cm	15,749,345		
15 cm dummy	12,877,884	Aluminum 7075	
15 cm dummy + raditor	11,577,404		
Optics #1 (5 foil)	10,863,441	Carbon	
Optics #2 (4 foil)	10,169,148	Carbon	
BeO	8,896,060	BeO	
Carbon Hole (5 mm)	8,180,796	Carbon	
Carbon Hole (2 mm)	7,465,532	Carbon	
Carbon (0.5%)	6,750,268	Ti	
Home	0	N/A	

Summary

- Wide angle pion photoproduction is an interesting and a powerful took to study the interaction mechanism in the wide angle regime
- A solution (handbag approach in the framework of GPDs) has been proposed and an independent test of the polarization observables is timely and necessary
- With minimal beam time request and experiment configuration change, we can test something fundamental that will contribute to the 3D picture of the nucleon