

E12-17-004 GEN-RP UPDATE

SBS SUMMER COLLABORATION MEETING

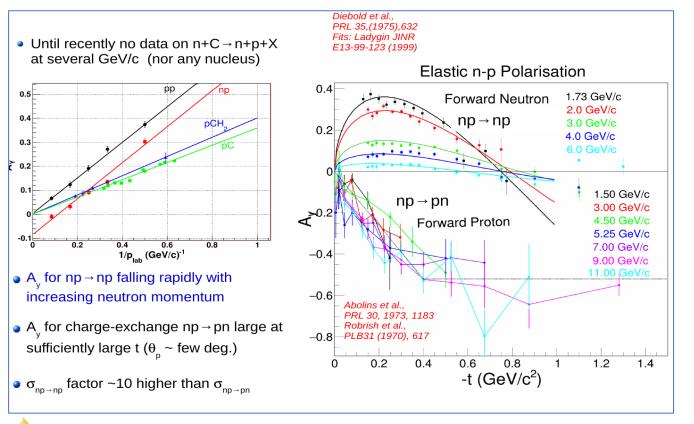
William Tireman for the E12-17-004 collaboration

Co-spokesperons: Bogdan Wojtsekhowski, Michael Kohl, David Hamilton

NORTHERN MICHIGAN UNIVERSITY DEPARTMENT OF PHYSICS

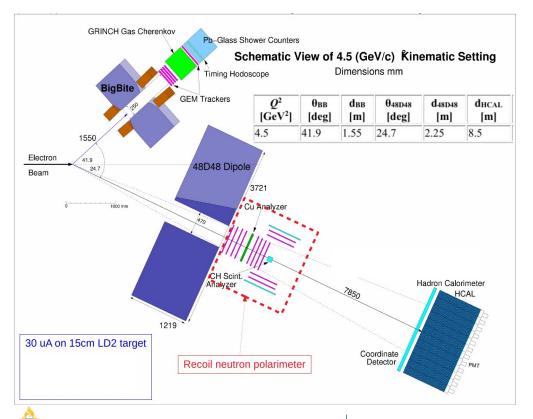
Outline

- Experimental overview
- GEn-RP Layout
- g4sbs study
- Design update
- Equipment status
- Personnel
- Summary

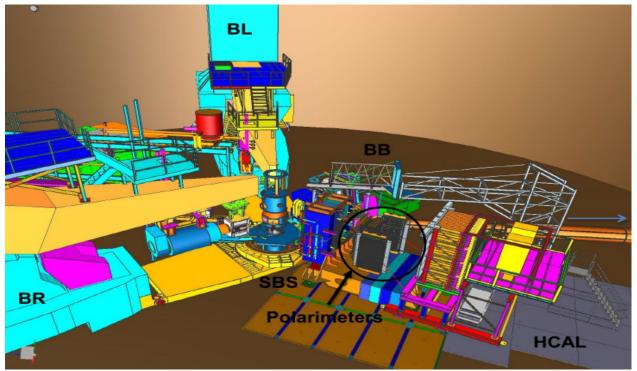


E12-17-004 GEn-RP Overview

E12-17-004 goals:


- Measure G_{En}/G_{Mn} at Q² = 4.5 (GeV/c)² using charge-exchange recoil neutron polarimetry
 - 4.4 GeV/c Energy, P_{beam} ~80%
 - 30µA on 15-cm LD₂
- Compare FOM for charge-exchange np \rightarrow pn scattering and the more standard np \rightarrow np
- Demonstrate the feasibility of detecting low-energy recoil protons from an active analyzer at large angles in an unshielded environment
- Originally proposed to "piggy-back" the GEn-RP measurement on the GMn experiment at the 4.5 (GeV/c)² kinematic setting.
- GEn-RP received final report from ERR Nov. 2020
- After many delays, GEn-RP now scheduled to run March 2024

Analyzing Power for Recoil Neutrons


From David Hamilton (Glasgow)

Kinematics and Schematic Setup (Original Design)

NORTHERN MICHIGAN UNIVERSITY DEPARTMENT OF PHYSICS

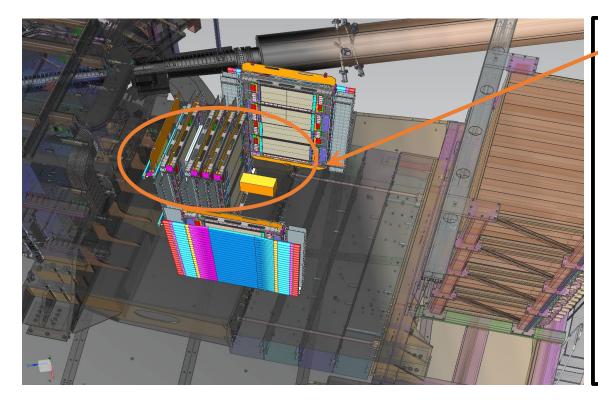
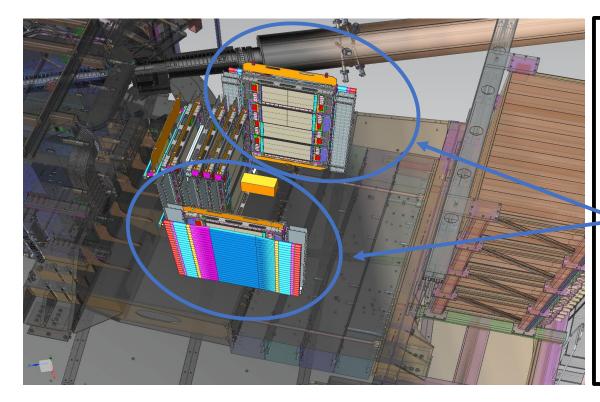
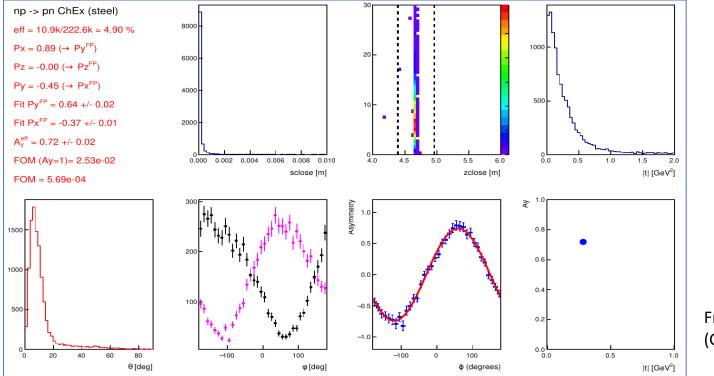
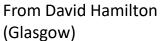

GEn-RP Layout Placement (Original Design)

Figure from Robin Wines

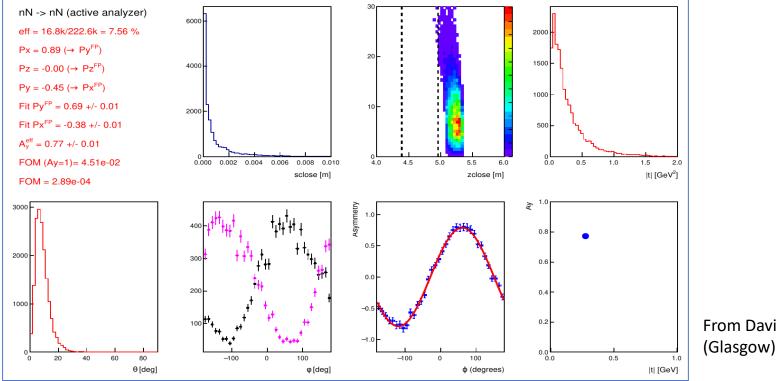

Two Neutron Recoil Polarimeters (Original Design)

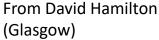
- Charge Exchange (CE)Polarimeter
- High-momentum forward protons (into HCAL) after CE np → pn
- 8 GEM planes
- 1 steel analyzer (change from Cu)
- Provision to mount active CH analyzer for np → np (detection of high-momentum forward neutrons in HCAL)
- Proton Recoil (PR) Polarimeter
- Low-momentum large-angle recoiling protons after np → np
- 2 sections, one each side of CE Polarimeter
- Each section has
- 2 GEM planes
- 1 Plastic scintillator plane


Two Neutron Recoil Polarimeters (Original Design)



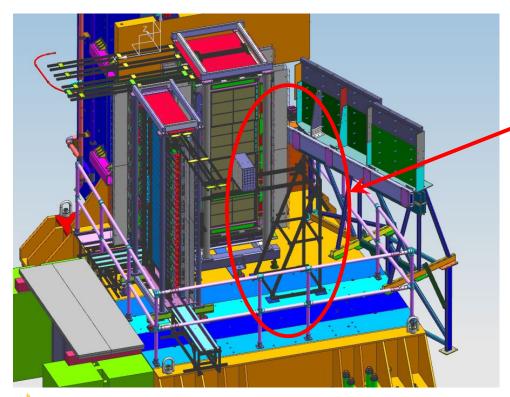
- Charge Exchange (CE) Polarimeter
- High-momentum forward protons (into HCAL) after CE np → pn
- 8 GEM planes
- 1 steel analyzer (change from Cu)
- Provision to mount active CH analyzer for np → np (detection of high-momentum forward neutrons in HCAL)
- Proton Recoil (PR) Polarimeter
- Low-momentum large-angle recoiling protons after np → np
- Original 2 side detector arrays reduced to 1
- 2 GEM planes
- 1 Plastic scintillator plane


Latest g4sbs studies (Charge Exchange)



NORTHERN MICHIGAN UNIVERSITY

Latest g4sbs studies (Forward Neutron)

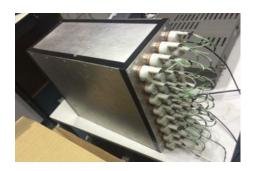

NORTHERN MICHIGAN UNIVERSITY

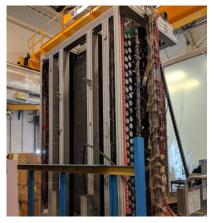
DEPARTMENT OF PHYSICS

Results from g4sbs studies

- The latest studies suggest the side PR polarimeters look much less encouraging:
 - Rates on the beamline-side detectors (>100 MHz) require lead shielding in the dipole cutout on the beam side
 - detrimental effect on charge-exchange polarimetry
 - Even with shielding, GEM occupancies on beamline-side will make identifying clusters and associating them with scintillator hits very challenging
 - Low-energy proton re-scattering and energy loss in the active analyzer causes a significant drop in efficiency
 - Background hits in the scintillator planes from electrons and pions cause significant dilution
 of the analysing power
 - Therefore the beamline-side detectors have been removed
 - This will mean two less GEM planes will be needed for the experiment

GEn-RP Support Structure Modifications (Final Design)


- Beam line side detector array removed
- Support structure for the active analyzer array redesigned
- Lead from beam side dipole cutout removed from design
 - Unseen from this angle


Equipment for Charge Exchange Polarimeter

- Passive steel analyzer on site
- HCal currently installed and operational
- GEM detectors are available
- Lead wall and support structure is on site
- Support and mounting frames are complete and on site
 - Exception is the modifications for the beam side change

Equipment for Large Angle Proton Recoil Detection

- Active analyzer on site (from Glasgow)
 - 4x8 array of scintillator bars w/ PMTs
 - 4-cm x 4-cm x 25-cm each
 - Weighs about 30 kg (in ESB)
- Proton detectors from old BigBite Hadron Stack
 - 24 detectors 3.0-cm x 8.5-cm x 50-cm
 - 2 PMTs each
 - All detectors checked 2019/20 (in ESB)

Electronics needed for scintillator detectors

- 48 channels negative HV
- 32 channels positive HV
- 1 Caen V1190 TDC (in Glasgow)
- 5 F250 FADCs
- 1 VXS crate (in Glasgow or ECAL) + SD + TI
- CAMAC crate and discriminators (in ESB)
- 80 180' HV and RG-58 signal cables (at JLab)

Personnel

- From University of Glasgow
 - David Hamilton, Rachel Montgomery (faculty)
 - Oliver Jevons (Postdoc)
 - Possibly one PhD Student + help with shifts from Gary Penman
- From Hampton University (MK group)
 - Michael Kohl (faculty)
 - Saru Dhital (PhD Student)
 - One Postdoc (50%) pending funding and selection
 - Expect supporting help from MK group members for shifts
- From Northern Michigan University
 - Will Tireman (faculty)
- SBS Collaboration for Hcal, BB, and GEM support
- Jlab technical support

Summary

- The GEn-RP experiment will measure the G_n^E of the neutron in quasi-elastic scattering from a deuterium target via charge exchange neutron polarimetry
- The figure-of-merit for two different multi-GeV neutron polarimeter concepts will be directly compared: the latest g4sbs studies look promising
- The feasibility of detecting low-energy, large-angle recoil protons will be investigated
- Installation to begin after Gen-II is completed with run in March 2024
- Will be thinking about a run plan and coordinating with the pion K_{LL} spokespeople in the coming weeks
- Results from this experiment will be used for future proposals in Hall C

Thank you

DEPARTMENT NAME GOES HERE

Extra slides

DEPARTMENT NAME GOES HERE

Simulated Background Hodoscope Rates

Configuration	Beam Side Hodoscope average rate		Far Side Hodoscope average rate		Active Analyzer Average Rate	
Original GEn-RP geometry	7.6	MHz	0.887	MHz	0.908	MHz
Removed lead Wall	10.2	MHz	0.868	MHz	0.625	MHz
Removed lead Wall Removed Beam Side detectors		MHz	0.843	MHz	0.802	MHz

24 detectors x average rate \approx 200 – 300 MHz on beamline side

