

ALL Experiment

E12-21-005 : Double Spin Asymmetry in Wide Angle Charged Pion Photoproduction

SBS Collaboration Meeting 17th July 2023

R. Montgomery (UoG) for:G. Cates (UVa);A. Tadepalli (JLab);B. Wojtsekhowski (JLab)

And all other WAPP and SBS Collaborators

Pion crucial in nuclear physics

- meson cloud
- nucleon-nucleon interaction
- simplest QCD state
- Goldstone boson
- nucleon/nuclear PDFs
- up/down sea-antiquark asymmetry

•

• $\gamma N \rightarrow \pi N$

- Simplest inelastic hadronic process
- Important testing ground for our understanding
- •Key probe in transition from meson-nucleon to quarkgluon degrees of freedom in exclusive processes

•Been around for decades!

- Initial studies SLAC 1950's
- •Since then: more SLAC, JLab, Bonn, Mainz, Spring-8
- •Still strong interest in this topic...

Pion Photoproduction $\gamma N \rightarrow \pi N$

- Several kinematic regions w/ different physics
 - •Near threshold (EFT/chiral perturbation theory)
 - Nucleon resonance (PWA)
 - •Above resonances, SIDIS (pQCD, GPDs...)
- Lots of data in near threshold to resonance
- Limited data above resonances (SLAC, CLAS, Hall A...)
- •Observables in wide angle regime very sensitive to underlying reaction mechanism
- •Wide angle = large s, t, u >> Λ_{QCD^2}
- Many intriguing features
- •e.g. SLAC, E_{γ} ~4-7.5 GeV, large -t and -u
 - s⁻⁷ scaling of cross-section
 - Scaling behaviour explained by constituent counting rule
- Theories can't explain absolute values of π^{\pm} cross sections from experiments (SLAC, Hall A...)
- Underlying reaction mechanism at high energies still not understood after >60 years of study...

-1.0

Generalised Parton Distributions (GPD) Based Theory

Kroll and Passek-Kumerički: Phs Rev D 97, 074023 (2018)

- Essential to understand mechanism responsible for observed cross sections in wide angle regime
- •Above resonance, at large s, -t, -u >> Λ^2_{QCD} ($\Lambda \sim 1 \text{GeV}$): • GPD treatment should work
- •GPDs:
 - •3D nucleon tomography by correlating transverse position and longitudinal momentum of partons
 - •Soft part of amplitude: universal non-perturbative GPDs
 - •Not measured directly, experiments measure differential cross sections and beam/target polarisation asymmetries
- •GPD formalism should work for Compton scattering AND exclusive meson production (at high Q^2)
- •DVCS and Wide Angle Compton Scattering at JLab:
 - Leading order treatment works well
- •Wide angle meson photoproduction:
 - Leading twist 2 analysis fails (helicity non-flip GPDs)

GPD Based Theory Predictions

- cross-sections by >2 orders of magnitude!

• Calculations using handbag model including only leading twist underestimate CLAS π^{0}

• Leading twist treatment within GPD framework not sufficient • Figuring out why will reveal nature of interaction mechanism responsible for cross-sections

• Calculations including higher twist (twist-3, 2 and 3 body) contributions do agree

- •GPD theory including twist-2 and twist-3 amplitudes solve issue in wide angle regime • P. Kroll and K. Passek-Kumerički (Phys Rev D 97, 074023 (2018))
- Predictions suggest dominance of twist-3
 - Should test this experimentally need more data in wide angle regime!
- •Signatures of twist-3: cross-sections and spin dependent double polarisation observables •Measuring polarisation observables in wide angle regime \rightarrow extremely valuable to test validity of handbag mechanism in GPD framework

Twist-3 Dominance: Smoking Gun for Experimentalists

- A_{LL}, K_{LL}: helicities of incoming photon and longitudinal polarisation for initial (ALL) or final nucleon (KLL)
- A_{LS} and K_{LS}: helicities of incoming photon and sideway polarisation of initial (A_{LS}) or final nucleon (K_{LS})

$$\begin{split} A_{LL}^{twist-2} &= K_{LL}^{twist-2} \\ A_{LL}^{twist-3} &= -K_{LL}^{twist-3} \end{split}$$

If twist-3 dominant: K_{LL} opposite to A_{LL}

Never before measured for charged pions in wide angle regime SBS can do this...

- Two WAPP measurements
- WAPP Collaboration ~60 collaborators from ~20 institutions
- E12-20-008 ... K_{LL}
- (spokespeople: J. Arrington, A. Puckett, A. Tadepalli, B. Wojtsekhowski)
- See Arun's talk
- E12-21-005 ALL
- This talk...

• (spokespeople: G. Cates, R. Montgomery; A. Tadepalli, B. Wojtsekhowski)

E12-21-005 ALL Original Plan

- Shed light on:
- Test if:
 - A_{LL} equals K_{LL}?


```
• Measure A<sub>LL</sub> for \gamma n \rightarrow \pi-p in wide angle regime (s, -t, -u >> \Lambda^2_{QCD})
```

 Nature of interaction mechanism of meson photoproduction • Twist-3 dominance in handbag mechanism cross-section calculations

```
• A<sub>LL</sub> depends on \theta_{CM} at s = 9 GeV<sup>2</sup> and large -u, -t?
• A<sub>LL</sub> has s-dependence at s > 9 GeV<sup>2</sup>?
```

• 10 PAC days awarded (PAC49 2021) for 5 Kinematic points to test above

E12-21-005 ALL Simulations

Kin	Beam E _e (GeV)	<Ε _γ > (GeV)	θ _π - (°) (i.e. BB)	p _π - (GeV/c)	θ _p (°) (i.e. SBS)	p _p (GeV/c)	Өсм	< S > (GeV/c)²	< -t > (GeV/c)²	(
A	6.6	4.5	41.9	2.02	24.3	3.29	103	9.3	4.7	
В	6.6	4.5	30.0	2.74	32.8	2.53	82	9.3	3.3	
С	6.6	4.5	52.0	1.58	19.5	3.74	116	9.3	5.5	
D	8.8	6.0	37.2	2.61	21.9	4.23	103	12.1	6.4	
E	11.0	7.5	33.7	3.20	20.2	5.15	103	15.0	8.1	

- Simulated in g4sbs
- Pion photoproduction generator from A. Puckett for K_{LL} • many thanks to Andrew for help with g4sbs/analysis
- e.g. shown: cross-section weighted Mandelstam variables
- s, -t, -u >> Λ_{QCD^2} , wide angle regime
- Large enough for handbag mechanism to play dominant role
- •g4sbs used to estimate kinematics, event rates, acceptances, efficiencies, $f_{\pi-p}$
- Expected statistical uncertainty on A_{LL} with proposed beam time: 5%

E12-21-005 ALL Exclusivity Checks Examples

- Distributions cross-section weighted, acceptance averaged, smeared for estimated momentum/angular resolutions
- p_{missing}[⊥]= total mom of pion and proton projected to plane perpendicular to beam direction
- Event "acoplanarity"
 - angle between pion and proton production planes
- Cut at <=0.1GeV/c to remove inelastic and non-exclusive events
- Resolution of photon energy reconstruction allows background removal e.g. multi-pion final states
- E γ formula originally developed for K_{LL}
- Cutting on missing mass parameter will also be used for this (M_x<=0.05GeV²)

1

...

- ERR May 2022 ... major issue was radiator...
- (<u>https://hallaweb.jlab.org/wiki/index.php/SBS_2022_ALL_Experimental_Readiness_Review</u>)

•New plan:

- Radiator removed
- Projected event rate loss factor 0.55 (smaller number of photons per incident electron)
- •Beam current increased $20\mu A \rightarrow 45\mu A$
- Request 3.5 PAC days at end of GEn II run
- One kinematic setting only ~ Kin B (6.6GeV), SBS and BB **both** at ~31.5° (θ_{CM} almost 90°)
- Matches K_{LL} to check twist-3 dominance
- •A_{LL} statistical uncertainty increases $5\% \rightarrow 10\%$
- •Uncertainties enough for $\sim 10\sigma$ comparison

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
eg. GeV GeV/c deg. GeV/c deg. $(GeV/c)^2$ $(GeV/c)^2$	< -u >
	(GeV/c)
1.9 4.5 2.02 24.3 3.29 103 9.3 4.7	2.9
).0 4.5 2.74 32.8 2.53 82 9.3 3.3	4.3
2.0 4.5 1.58 19.5 3.74 116 9.3 5.5	2.1
7.2 6.0 2.61 21.9 4.23 103 12.1 6.4	4.0
3.7 7.5 3.20 20.2 5.15 103 15.0 8.1	5.2

New plan: Only Kin B (almost 90° CM angle)

• (Estimated via effective photon approximation V.M. Budnev, et al., Physics Reporta (Section C of Physics Letters) 15, no. 4 (1975) 181–282)

Spin dependent observables for test of twist-3 dominance

- BB or SBS

$$A_{\rm LL}^{\rm twist-3} = -K_{\rm LL}^{\rm twist-3} = -4 \frac{S_T^{\pi^0} [S_T^{\pi^0} - \frac{t}{2m^2} S_S^{\pi^0} + \kappa \frac{\sqrt{-t}}{2m} \bar{S}_T^{\pi}}{F^{\pi^0}}$$
$$A_{LS}^{\rm twist-3} = -K_{LS}^{\rm twist-3} 2 \frac{S_T^{\pi^0}}{F^{\pi^0}} \left[\frac{\sqrt{-t}}{m} \bar{S}_T^{\pi^0} - 2\kappa \left(S_T^{\pi^0} - \frac{t}{2m^2} S_S^{\pi^0} \right) \right]$$

 A_{LL} = helicity of incoming photon and longitudinal polarisation of initial nucleon A_{LS} = helicity of incoming photon and sideway polarisation of initial nucleon

• Measure A_{LS} AND A_{LL} (concept from Bogdan) • Compensate for loss in photons by doing 2 simultaneous measurements • Double productivity by accessing A_{LS} simultaneously without tricky target change

 Cannot easily change target to flip transverse polarisation • Target polarised at 60° to beam •BB and SBS symmetric around beam line, ~31.5° each

• Measure both p and π - in both BB and SBS • Flip of transverse polarisation (S) around beam line equivalent to measuring in either

Longitudinal component stays same

• Raw asymmetry has contributions from A_{LL} and A_{LS} • Asymmetry observed by BB compared to SBS differs by opposite signs of A_{LS} only • A_{LL} is average and A_{LS} is difference in BB/SBS asymmetries

Old 5% statistical uncertainty shown, but now will be 10% 15% theory uncertainty not shown

Still enough to test theory on level of 10σ (including accuracy of K_{LL})

Summary

•E12-21-005:

- •3.5 PAC days to opportunistically measure ALL and A_{LS} at $\theta_{CM} \sim 90^{\circ}$ at end of GEn
- (initially granted 10 PAC days)
- Set-up same as GEn, with:
 - •45µA 6.6GeV, BB and SBS at 31.5°; target polarised 60° to beam
 - Include SBS GEMs in DAQ
 - Trigger checkout needs to be checked for p and π - in both arms simultaneously
- ALL complimentary to SBS KLL
- •SBS measurements will:
 - Test twist-3 dominance in pion photoproduction cross-sections in wide angle regime
 - Test validity of handbag mechanism within **GPD-based framework**
 - •Help study interaction mechanism for wide angle pion photoproduction
 - ~70years old problem

Thank You

Cross-section parameterisation*:

$$\frac{d\sigma}{dt}_{\gamma n \to \pi^- p} = 1.7 \times 0.83 \times (10)$$

•Event rate $N_{\pi^{-}p}$:

Kin	A	В	С	D	Ε
f _{π-p}	0.31	0.18	0.51	0.35	0.37
Pion detection	0.41	0.38	0.37	0.42	0.37
Proton detection	0.86	0.81	0.88	0.92	0.93
p _{miss⊥} cut	0.85	0.86	0.82	0.82	0.84
Estimated counts per hour	1420	980	1150	530	120

* π⁺ cross-section from: R.L. Anderson et al., Phys. Rev. D 14, 679 (1976) Correction for π - from π +/ π + yields from deuteron from: L.Y. Zhu et al., Phys. Rev. Lett. 91 (2003) 022003; Phys.Rev. C71 (2005) 044603

 $(s)^{7}(1 - cos(\theta_{CM}))^{-5}(1 + cos(\theta_{CM}))^{-4})^{-4}$

- To get final estimated rate, $N_{\pi-p}$ corrected for expected DAQ dead time
 - •from g4sbs studies: losses due to pion/proton detection/trigger efficiencies and event selection cut on missing momentum for reaction

- •Below table accepted originally by PAC (who awarded 10 PAC days)
- •Accounts for:

 - •Spectrometer angle changes
 - Target polarisation measurement (every 4 hours)
 - •BB optics runs and trigger checkout for π (as opposed to e')
 - Beam pass changes and associated beam positioning

Kin	Beam E _e (GeV)	<Ε _γ > (GeV)	соs (Ө _{СМ})	< S > (GeV/c) ²	< -t > (GeV/c) ²	< u > (GeV/c)²	Beam on target (hours)	Time (hours)	ΔA _{LL} accuracy
A	6.6	4.5	-0.23	9.3	4.7	2.9	6	37	±0.05
В	6.6	4.5	0.14	9.3	3.3	4.3	6	27	±0.05
С	6.6	4.5	-0.44	9.3	5.5	2.1	8	27	±0.05
D	8.8	6.0	-0.23	12.1	6.4	4.0	16	47	±0.05
E	11.0	7.5	-0.23	15.0	8.1	5.2	60	98	±0.05

•Production at kinematics (photon/neutron polarisations; dilution from π - Δ ++ background)