

"Where we are & a glimpse of where we're going."

Brad Sawatzky (JLab)

First up: A Couple Quick Tricks to make your Computing Work Suck Less

How to find information

- JLab's web search is . . . not good . . .
 - \rightarrow Still working on improving this...
 - » Baby steps: ServiceNow SciComp Portal "Knowledge Base"
 - » <u>Getting Started</u> and <u>Experimental Physics User's Guide</u> pages are updated
 - Info still not widely searchable... Getting better as of this week!
 - \rightarrow Search trick: do this in Firefox:
 - » Go to <u>www.google.com</u> and search for 'site:jlab.org foo'
 - » Right click on the bookmark and choose 'Properties'
 - Give it a good name
 - Give it a short 'keyword' like 'jj'
 - Clean up the Location as shown, replace 'foo' with %s
 - → Now type 'jj ifarm' in URL bar
 - %s in 'Location' string is replaced with text following Keyword

- » 'site:jlab.org' is google-fu to restrict search to jlab.org domain
- » 'site:jlab.servicenowservices.com' can find (current) KB articles now

How to find information

• Trick works great for many things

→JLab staff page (<u>https://misportal.jlab.org/mis/staff/staff.cfm</u>)

- » Keyword: 'page'
- » Location (can extract from search on 'smith' above):
- » https://misportal.jlab.org/mis/staff/staff.cfm?field=all&name= %s&Search.x=36&Search.y=11&Search=Search&field=all

\rightarrow ROOT / G4

- » Keyword: 'gr'
- » Location:

https://www.google.com/search?hl=en&btnG=Search&q=site:cern.ch%20%s

→Stackoverflow.com

→JLab Logbook (a little trickier, but you can work it out)

 \rightarrow ...

How to work from Offsite

- How to work from offsite without tearing your eyes out because, holy hell, the graphics and menus are just so slow...
- VNC + ssh tunnel to the rescue
 - → VNC: Virtual Network Computing
 - → ssh used to securely move VNC traffic through jlab firewall

- Computer Center How-to → <u>https://cc.jlab.org/accessingvnc</u>
- Old 'howto' I wrote for my collaboration
 - \rightarrow adapt to machine you use
 - →Search: 'jj vnc session'
 - » Pick: Using a VNC Server/Client

How to work from Offsite

- How to work from offsite without tearing your eyes out because, holy hell, the graphics and menus are just so slow...
- Virtual Desktop Environment (VDI)
 - → <u>https://vdi.jlab.org</u>
 - → Fewer "hoops" than VNC, but...
 - limited number of 'slots' available
 - logins are not as persistent

- Computer Center How-to
 → https://cc.jlab.org/remoteaccess
- Use screen, tmux for terminal sessions
 - » Maintains 'state' if you disconnect.
 - » Can reconnect from anywhere

Offline Analysis Farm Usage / General JLab Computing

Nuts to the Farm, I analyze on my Desktop

- Simple tasks, some analysis OK on the desktop, BUT!!
 - \rightarrow Thou shalt backup your code!
 - \rightarrow Thou shalt backup your results!
 - \rightarrow Who among us has done
 - % rm -rf stuff/
 - » Followed by !@#\$?
- Don't keep only copies on your laptop
- Don't keep only copies on your desktop's hard drive
- Do use git for all code and scripts!
 - \rightarrow Commit early, commit often
 - \rightarrow 'git push' often too!
 - » It's a backup!

- Hard drives die and the data are gone.
 - \rightarrow Drives are large and cheap
 - → But reliability on consumer drives is worse that it used to be!
 - → SSDs are (weirdly) no better!
- IF your hard drive died today, how long would it take to recover?
 - » a day, a week,
 - » a month???

JLab Systems Exist to Support You

- /home, /group are automatically backed up
 - →They are snapshotted hourly!
 - % cd .snapshot/
 - % ls -lrt
 - →Longer term backups are on tape
- /mss
 - →"Index" of what is on tape (not actual files)
- /cache
 - →Actually access files on the tape system

- /work, /volatile are on heavily redundant filesystems
 - \rightarrow NOT backed up
 - » Use tape
 - →More on this later...
- NOTE: Your JLab RHEL system can mount these directories if needed
 - →Talk to me if this would help

File Systems: Where do I put my stuff?

- JLab SciComp/IT provides
 - →/group a space for groups to put software and some files, backup up by CST
 - \rightarrow /home your home directory, backed up by CST
 - →/cache 'mirrors' files backed by tape system so you can use them
 - \rightarrow /volatile acts as a scratch space for large output
 - →/work unmanaged outside of quotas & reservations; no backups; bigger and faster than /group

The JLab Farm • Power at your Fingertips

- Farm has many pieces
 →~30000 compute cores
 - →~6 PB Lustre
 - →~5 PB NFS/XRootD (ZFS)
 - \rightarrow ~100+ PB of Tape
 - →Consumes ~400kW of power!
- Growth is \$\$\$ and based on projections from Halls
 - →Expenditures often switch between storage + CPU every other year

The JLab Farm • Batch Computing

- The Farm: Batch Computing
 - →No direct access to these machines
 - » Use "Interactive" farm nodes for testing
 – ie. ifarm1802
 - →DB and other network access (git, http, etc) generally constrained
 - →Jobs controlled by automated system called "slurm"
 - →You submit a job via slurm or swif2 and slurm schedules it to run

- All about trade offs:
 - →"Latency" can be high (hours+ from submission to job execution)
 - » BUT!
 - →Throughput is enormous
 - » 100s (1000s) of jobs can run simultaneously
 - » High bandwidth access to fast storage
 - →A full replay (100s of runs) can be completed in the time it would take 2–3 runs to complete in series on your desktop.

Thomas Jefferson National Accelerator Facility

HUGS • June 2023

The JLab Farm • Scheduling

- The Farm is a Lab-wide shared resource
 - →Each Hall's budget includes \$\$\$ to support their usage
 - \rightarrow *Rough* allocation:
 - » A: 9%, C: 9%
 - » B: 34%, D: 34%
 - » EIC: 14%
- Ruled by Slurm workflow manager
 - →Allocations <u>not</u> written in stone and are adjusted based on needs

- The balance is trickier to manage than you may think...
 - →Jobs take time to run (system doesn't know how long beforehand)
 - →Upcoming job load is hard to predict
 - →System balances allocations over a few days, not hours
- More documentation here:
 - →<u>https://scicomp.jlab.org/</u>
 - →<u>https://data.jlab.org/</u>

Farm Cluster Daily Usage by Account

Slurm Fairshare Setting/Usage Info

ISA

Do use the Farm!

- The Farm is not your desktop
 →Best to plan, test, and fire off groups of jobs
- Test your job first!
 - \rightarrow Can it run reliably?
 - » If it doesn't run on ifarm180x, it won't run on the farm!
 - →Is the output what you want?
 - » Check before firing off 100 jobs

- Simple tasks, some types of analysis can be done on small systems, BUT!!
 - →Thou shalt back up your code!
 - →Thou shalt back up your results!
 - →IF your hard drive died today, how long would it take to recover?
- <u>Don't</u> keep only copies on your laptop
- Don't keep only copies on your desktop's hard drive

What's a "Job"?

- A 'Job' often maps to a shell script
 - → It can do multiple things, but usually it executes a single instance of your software
 - » Analyze one run, or
 - » Simulate "1M" events,
 - » etc...
- NOTE: Output that would normally go to a terminal goes to special file system:

/farm_out/\$USER/job_id.out /farm_out/\$USER/job_id.err

https://scicomp.jlab.org/docs/FarmUsersGuide

Debugging a job

- Generally want a single script that does everything!
 - \rightarrow Set up full environment
 - \rightarrow Use full paths
 - » /group/myExp/myscript.sh
 - » ./myscript.sh
- Testing your script:
 - $\rightarrow 1^{st}$: Run on ifarm180x
 - $\rightarrow 2^{nd}$: Submit job to Farm
- Test with the 'debug' Farm track
 - \rightarrow Max priority, fast sched.
 - \rightarrow Limited 4 hour runtime
 - → Limited jobs/user

- Test on ifarm180x
 - % ssh you@ifarm1802
 - % /group/myExp/myscript.sh
 - \rightarrow Make sure it worked!
 - » check histos, report files

• Quick Test on Farm

- % swif2 add-job -create \
 -track 'debug' \
 <other options> ... \
 /group/myExp/myscript.sh
 - \rightarrow Make sure it worked!
 - » check histos, files
 - » check /farm_out/\$USER/
- Then submit full set!

→<u>SWIF2!</u>

Make your jobs run faster!

- Scheduling jobs takes many things into account
 - \rightarrow File availability from tape
 - →Memory request
 - \rightarrow CPU/core request
 - » >1 is useless for podd/hcana
 - →'Fairshare' metric
 - » Average Hall utilization
 - » Hall Usage can be subdivided further
- Details
 - → Fairshare Web Page

- If a Hall / Project is not using 'their' fraction, then those Farm resources are available to anyone on a first-come, first-serve, basis!
 - →If the Farm is idle, you can take advantage!
 - » Like now!

8

Thomas Jefferson National Accelerator Facility

Make your jobs run faster!

- Common Bottlenecks/ Mistakes
 - \rightarrow CPU count
 - » use 1 core only (unless you know the job can multi-thread efficiently!)
 - » your job gets 'billed' for requested cores whether you use them effectively or not
 - \rightarrow Memory allocation
 - » < 2GB is best!
 - » Smaller \rightarrow Faster scheduling!
 - \rightarrow Insufficient debugging/ cross checks
 - » Fire off 100s of jobs with bad config, buggy code
 - » Waste compute time on the Farm waiting for trash to complete, then have to resubmit and wait again after you notice the issue.

Small I/O Problems

- Small read/write operations are <u>very</u> inefficient
 - \rightarrow Old/legacy code defaults can be very small (~4kB)
 - \rightarrow Should be closer to 4MB chunks for decent performance
 - \rightarrow Buffered IO can bridge the gap if needed
 - » Common errors:
 - 'Debugging' output
 - » stderr << "got here" << endl;</p>
 - » fprintf(stderr, "event %d\n", eventNum);
 - Opening/closing files very frequently
 - Frequent random I/O
 - » ie. searching through a file for a parameter every event
- Workflows / procedures that may work on desktops or older systems do <u>not</u> scale well on modern systems (100s or 1000s of simultaneous jobs)
 - \rightarrow Can take down / degrade system-wide filesystems
 - → Always be mindful you are on a large-scale shared system, not a personal desktop

Check Job Status

Questions on the "Practical Scientific Computing" bit?

CHEP 2023

 26th International Conference on Computing in High Energy & Nuclear Physics (<u>CHEP 2023</u>)

 \rightarrow Hosted by JLab in Norfolk, VA

- →May 8–12, 2023
 - » <u>Pre-Conference Workshop</u> May 6–7
- ~600 Registrants
 - →450+ Oral Presentations
 - \rightarrow 140+ Posters

• 20 Plenaries

 \rightarrow Plenaries recorded; online soon

- DEI Roundtable Discussion
- I am leaning on the excellent work of the Program Committee and Track Conveners!
 - →<u>Track Summaries</u>
 - → Scientific Program (Indico)

Data and Metadata Organization, Management and Access

- XRootD, dCache, Rucio
- Consolidation of access protocols and APIs
- Networks
 - \rightarrow need to view as scarce resource
 - →direct impact on compute models
 - →can not treat as a black box anymore
- Caching, Data meta-data transparency/visualization critical
- Cloud Storage increasingly important
 - →Rucio 'speaks' AWS, GCS, SEAL, etc
 - →Authentication is complicated

Online Computing

е

Local

Aggregation

Processing

Time-Frame Building

Processin

Processing

- Streaming Readout development
 - → LHCb/Run3 proof-ofprinciple
 - \rightarrow ALICE
- CMS Run 3: 40% reduction in reconstruction time using GPUs
- JLab HYDRA and AIEC efforts called out as highlights
- Containerization of DAQ systems combined with Kubernetes orchestration
- Each DAQ application is containerized and handled by Kubernetes(container orchestration tool)
 - > Remove the dependency on OS/Library
 - > Easier deployment of DAQ application over hundreds of nodes.
- > Study is ongoing in DUNE and CMS.
 - > To what extent can Kubernetes control the DAQ system?

- Al based detector monitoring
 - → Do the anomaly detection that is critical for smooth data taking, but is tedious and exhausting for humans
- Web-based UI
 - → Tagging/Labeling
 - → Anomaly monitoring
- Extensible Framework
 - → All JLab Halls have deployed HYDRA
- Future development
 - → Continue to streamline UI and generalize software deployment
 - → Determine and flag data regions that triggered anomaly for users
 - » ie. reveal *why* Hydra labeled something 'bad'

AI Experimental Calibration and Control (AEIC)

- Sensitive detectors need to be calibrated to obtain optimal resolution
 - → Calibrations cause a delay between data collection and analysis (weeks-months)
 - → Multiple iterations are needed to converge to final set of constants
 - \rightarrow Development platform
 - » GlueX Central Drift Chamber
 - » Gaussian process w/ 3 features:
 - atm. pressure, gas temp, HV board current draw

Main Goal:

- → Dynamically adjust the controls of a sensitive detector to reduce/ eliminate need for calibration
- → Key factor: "Guardrails"!!
 - » Do not allow the system to move outside reasonable boundaries (*because it will*!)

Thomas Britton[§], Michael Goodrich[§], Naomi Jarvis^{*}, Torri Jeske[§], Nikhil Kalra[§], David Lawrence[§], Diana McSpadden[§], Kishansingh Rajput[§]

27

Offline Computing

 Simulation, Data processing Ultra-Fast Simulation: Lamarr Reconstruction Fast Simul LHCb Ultra-Fast Simulation strategies replace Data processin ML is pervasive Geant4 with parameterizations able to transform generator-level particles into analysis-level reconstructed objects [1]. \rightarrow reconstruction Iltra-Fast Simulatio Lamarr consists of a pipeline of (ML-based) Gauss Data processing modular parameterizations designed to replace \rightarrow anomaly detection both the simulation and reconstruction steps LHCb Preli 30000 2016 MagUp \rightarrow surrogate models for 2016 MagU Detailed S mion (model proton (data) proton (mode 2500 2000 fast simulation 15000 » ie. PHASM 25 0 -50 0 50 100 Combined Differential Log-Likelihood (u - p) 1/pT [GeV/c] ECAL face x-coordinate [mm] tracking system models particle identification **ECAL** simulation GPU / heterogeneous Computing challenges for HL-LHC architectures are the future Focus is on speeding up Simulation and Reconstruction: \rightarrow Simulation Geant4 Geant4 + AdePT(EM calorimeter) - Need for increased MonteCarlo simulation samples 250.00 - Reconstruction scales badly with pileup (incl. G4) > 2x throughput increase 200.00 150.00 100.00 ATLASPreimin 100 x 10 GeV e⁻/event gun 85% EMCAL 50.00 AdePT buffer size = 2000 N 0.00 10 15 20 Marilen a Bandieramonte - CHEP 2023 Conference Highlights: Track 3 Jefferson Lab HUGS • June 2023

Parallel Hardware viA Surrogate Models (PHASM)

- What is PHASM
 - \rightarrow LDRD project at JLab
 - \rightarrow 1 year old; 2–3 developers
 - \rightarrow Proof of concept
- Basic Idea
 - → Simplify training a neural net surrogate model to mimic and replace an arbitrary piece of existing numerical code.
 - → Systemize and formalize the process from analysis to deployment.
- Perspective Shift
 - \rightarrow A neural net surrogate model of an algorithm is a *transformation* of that algorithm.
 - → Eventually, classical numerical methods and their data-driven analogues will be understood under a unified theory.

29

Distributed Computing

- Discussions of a variety of analysis workflows ATLAS, CMS, Astro, Grav.
 - \rightarrow All working to use Grid, HPC and cloud
- Central Orchestration frameworks, Workload management
 - →HEP-"born" systems being reused/repurposed within other fields (Astro, NP)
 - \rightarrow PanDA, DIRAC, Rucio, etc
- Monitoring and Analytics
 - \rightarrow Tracking and Visualizing job performance is becoming critical
 - \rightarrow Analysis Grand Challenge (HEP)
 - » Study scalability and featurecompleteness of scikit-HEP tools

Thomas Jefferson National Accelerator Facility HUGS • June 2023

waiting

finalizin

Sustainable and Collaborative Software Engineering

- CI & Build Infrastructure automation
 - \rightarrow Kubernetes, Nomad
 - → GitLab / GitHub actions
 - \rightarrow Jenkins popular
- Interesting Research on how physics analysis gets done
 - \rightarrow Global analyses of code within ATLAS git repos
 - libraries in use, version uptake, function-call pattern, ligm languages No standard curricula for HEP exists
 - \rightarrow Tools/Studies of I/O workflows
- Julia came up in a few contexts as "sweet spot between C++ and Python" wrt to performance vs. coding efficiency
- User Centered Design for EIC called out as a highlight (Markus, Wouter)

Sustainable Analysis

Coffea = user interface for columnar analysis:

- dask awkward fundamentally changes how we can describe analysis
- dask awkward based analyses, via dask task graphs, are rendered into a general, complete, declarative analysis description language (ADL)
- Represents the culmination of ~4 years of R&D

Law = Luigi Analysis Workflow, in Python

- Large Scale End-to-End Analysis Automation over Distributed Resources
- Designed to fully decouple these 3 aspects:

Jefferson Lab

Thomas Jefferson National Accelerator Facility

HUGS • June 2023

▶ job monitoring: simple health checks

CERN IT infrastructur

ALICE is using Hashicorp Nomad, Vault and Cosul

Track 6: Physics Analysis Tools

HUGS • June 2023

Facilities and Virtualization

Thomas Jefferson National Accelerator Facility HUGS • June 2023 33

ESnet JLab FPGA Accelerated Transport (EJFAT) / Integrated Research Infrastructure Architecture (IRIAD)

- Demonstrate dynamic steering of streaming data
 - → Data format contains metadata describing content
 - → Using standard IP based network, all traffic is directed to an FPGA device
 - → Firmware modifies packet headers to reroute data based on data type, and what kind of destination it should stream to
 - → Route data based on the kind of data it is, where it came from, and where it needs to go
 - → Reroute data in-flight when system architecture reconfigures
 - → Remote data sources can be agnostic of the destination hardware configuration
 - Goal is dynamic, intelligent steering of data
 - → Improve resilience and fault tolerance
 - → automated failover between two data center sites
 - → All core tech for future time-critical science use cases!

Thomas Jefferson National Accelerator Facility HUGS • June 2023 34

Graham Heyes (PI), Amitoj Singh (Co-PI)

Al and ML

- It's everywhere...
 - \rightarrow Reconstruction
 - » tracking, cluster/vertex finding
 - →Anomaly detection
 - » at physics level, detector level, and hardware level
 - → Simulation / Fast Parametrizations \rightarrow Detector Design (ie. ePIC)
- Concerns about 'Black Box' systems are well recognized and being aggressively addressed among the experts
 - \rightarrow Uncertainty modelling
 - \rightarrow Interpretability
 - » How is a model making a decision/classification?
 - » What neurons are active, what has the system found to be important.

MI shouldn't be a black box!

Uncertainty modelling

ATLAS Preliminary

-1 a.-0.75 m. - 2005

Pooling operation

Interpretability

Helps to improve performance Analyse eg. feature importance, neuron activation patterns, latent space distributions

Interpretability Inspires: Explainable AI for DNN Top Taggers, Tue 09/05

Thomas Jefferson National Accelerator Facility HUGS • June 2023

Efficient search for

new physics using Active Learning in the ATLAS Experiment

recast

Tue 09/05

Thank You

Useful links: <u>JLab Scientific Computing</u> <u>JLab EPSCI Group</u> <u>Software & Computing Round Table</u> <u>Future Trends in Nuclear Physics Computing</u>

Yet more on Where do I put my stuff?

File Systems: Where do I put my stuff?

- JLab SciComp/IT provides
 - →/group a space for groups to put software and some files, backup up by CST
 - \rightarrow /home your home directory, backed up by CST
 - →/cache 'mirrors' files backed by tape system so you can use them
 - \rightarrow /volatile acts as a scratch space for large output
 - →/work unmanaged outside of quotas & reservations; no backups; bigger and faster than /group

- /home/<you>/
 - \rightarrow hourly snapshots
 - » cd .snapshot/
 - →personal, nonanalysis files
 - » papers, notes, thesis, etc...
 - →analysis scripts: ~OK
 - » use git!
 - \rightarrow source code: \sim OK
 - » /work better
 - →NEVER store ROOT files or CODA files in /home

- Your laptop / desktop
 - →Should really be just a front-end for working on JLab systems
 - →Everybody plans to do backups, but almost no one actually does backups until after they've lost data...

- /group
 - →Think "/home" for work groups
 - » papers, thesis, etc
 - →hourly snapshots
 - » cd .snapshot/
 - →analysis scripts: YES
 - » use git!
 - →source code: ~OK
 - » /work is better
 - →papers, thesis, etc in user subdirs is great

- /work
 - \rightarrow Tuned for speed, small files
 - » ie. source, binaries, etc.
 - \rightarrow NOT backed up
 - » but is resilient
 - » snapshots available under .zfs/snapshot/
 - →Source code: YES
 - » use git!
 - \rightarrow ROOT output: ~ick (don't)
 - →CODA data: No
 - \rightarrow YOU must backup to tape
 - » tar + jput (more on this soon)

42

- /group
 - →Think "/home" for work groups
 - » papers, thesis, etc
 - →hourly snapshots
 - » cd .snapshot/
 - →analysis scripts: YES
 - » use git!
 - →source code: ~OK
 - » /work is better
 - →papers, thesis, etc in user subdirs is great

- /work
 - \rightarrow Tuned for speed, small files
 - » ie. source, binaries, etc.
 - \rightarrow NOT backed up
 - » but is resilient
 - » snapshots available under .zfs/snapshot/

PSA: /work snapshots can be a pain because they count towards the quota for that space! (But you can't see them.)

- Generate big files, fill quota, whoops!
 - rm -rf <all the big files>
- quota still full!?!
- Talk to helpdesk... (nothing you can do)

43

- /volatile
 - →Largest file system
 - » Petabyte scale
 - →High performance for large files
 - » ie. ROOT output
 - \rightarrow NOT backed up
 - →Files auto-cleaned based on quota/ reservation/ and filesystem pressure
 - » https://scicomp.jlab.org/docs/volatile_disk_pool
 - →Analysis output goes here!
 - » Check, then push to tape if good!

- Tape System
 - →Even bigger
 - » 100+ PB and growing
 - →/mss/hallX/...
 - » Stubs: shows what is in the tape system!
 - » not the actual files
 - →/cache/hallX/...
 - » actual files
 - » auto-clean up in play
 - next slide

File duration in /cache

$\leftarrow \rightarrow$ C 2 \blacksquare \bigcirc A a https://scicomp.jlab.org/scicomp/cacheDisk/project

태 ☆ 🖳 👱 S 🐭 태 한 » =

Scientific Computing A username Getting Started Support Staff Members									
Cluster Info	^	Write-through Cache System 3100 (TB)							
Farm Nodes		Project Usage	jcache Requests	jcache Query	File Pin Info	Usage By User	Small File Usage	File Distribution	
Slurm Jobs		Filter							
Swif2 Jobs		Name	High Quota (GB)	Guarantee (GB)	Pin Quota (GB)	Cached (GB)	NeedTape (GB)	SmallFileCount*	Pinned (GB)
Usages		halld	1,550,000	800,000	800,000	1,590,648	14,552	24,855,716	305,610
		clas12	1,050,000	500,000	500,000	1,051,307	0	3,028	162,189
File System	^	halla	400,000	200,000	200,000	321,113	5	60,471	0
		hallb	140,000	70,000	60,000	140,170	308	152,732	15,024
Lustre		hallc	130,000	70,000	70,000	102,083	0	769,410	2,818
Cache		clas	70,000	35,000	20,000	38,854	0	2,326	0
Volatile		cebaf24gev	5,000	2,000	2,000	0	0	0	0
Work		eic	4,000	2,000	200	1,670	0	2	0
Usage History		home	3,000	1,000	1,000	1,146	0	136,308	0
		accel	2,000	1,000	800	1	0	1,191	0
Tape Library	^	Sum:	3,354,000	1,681,000	1,654,000	3,246,992	14,865	25,981,184	485,641

- Files auto-cleaned based on quota and system pressure on /cache
 - \rightarrow Clean up least-recently-used files first
 - \rightarrow Can 'pin' files to keep them stable
 - » Shared resource, don't abuse!

Accessing files from Tape

- Retrieving files from tape
 - →jcache get /mss/.../foo.dat
 - » Manual pull from tape to /cache/.../foo.dat
 - » Never call this (or jget) in a farm script!
 - Let SWIF2 do it!
 - » List needed files as <Input> tag(s)
 - » Backend will prestage them for you in advance
 - →jget /mss/.../foo.dat \$PWD/
 - » pull file from tape to any filesystem
 - » generally not the right tool

Copying files to Tape

- Storing files on tape
 - \rightarrow jput file /mss/.../
 - » 'jput -h'
 - » <u>Online Docs</u>
 - \rightarrow 'write-through cache' (<u>Online Docs</u>)
 - » write large file output directly to /cache/hallX/...
 - no 'staging' on /volatile
 - » automagically backed up to tape after a few days
 - guaranteed to be safe on tape before /cache autoremoval kicks in
 - » Gotchas:
 - small files (<1MB) not backed up to tape
 - avoid pathname collisions with files already on tape
 - » ie. 'overwriting' files with same name, etc

