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Motivation

• All visible matter is 
made up of atoms
• The mass of these 

atoms are largely 
from the nucleus
• The nucleus is made 

up of protons and 
neutrons
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Motivation

• In turn, these protons 
and neutrons are made 
of quarks and gluons
• We want to study the 

structure of the nuclear 
matter

(Image: CERN)
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What’s the problem?

Quarks and gluons are not directly measurable because of color
confinement!

Have to be inferred from experimental data
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How to handle this

• We make use of QCD, which allows us to 
study the structure of hadrons in terms of 
partons (quarks, antiquarks, and gluons)
• Use factorization theorems to separate 

hard partonic physics out of soft, non-
perturbative objects to quantify structure
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Game plan

What to do:
• Define a structure of hadrons in terms of quantum field theories
• Identify physical observables that can be theoretically factorized with 

controllable approximations, or factorizable lattice QCD observables
• Perform global QCD analysis as structures are universal and are the 

same in all processes
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Complicated Inverse Problem

• Factorization theorems involve convolutions of hard perturbatively 
calculable physics and non-perturbative objects

• Parametrize the non-perturbative objects and perform global analysis
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What do we know about structures?

• Most well-known structure is through longitudinal structure of 
hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. D 104, 074031 (2021) (many other groups working on this!)
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Other structures?

• To give deeper insights into color confined 
systems, we shouldn’t limit ourselves to 
proton structures
• Pions are also important because of their 

Goldstone-boson nature while also being 
made up of quarks and gluons
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• Historically, pion distributions have been extracted from fixed target 
𝜋𝐴 data
• Drell-Yan (DY) 𝜋𝐴 → 𝜇!𝜇"𝑋
• Prompt photon 𝜋𝐴 → 𝛾𝑋

Pion structure in phenomenology
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GRS, GRV, and SMRS ASV valence PDF xFitter
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Owens 
attempted 
to use 𝐽/𝜓
production

Statistical modeling



Large momentum fraction behavior
• Many theoretical papers have studied the behavior of the valence 

quark distribution as 𝑥 → 1 and 
• Debate whether 𝑞!"(𝑥 → 1) ∼ 1 − 𝑥 or 1 − 𝑥 #
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Large-𝑥! behavior

• Generally, the parametrization lends a 
behavior as 𝑥 → 1 of the valence quark PDF of
𝑞! 𝑥 ∝ 1 − 𝑥 $

• For a fixed order analysis, analyses find 𝛽 ≈ 1
• Aicher, Schaefer Vogelsang (ASV) found 𝛽 = 2

with threshold resummation
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ASV valence PDF
Phys. Rev. Lett. 105, 114023 (2011).



Lattice QCD Activity

• Simulations on the lattice have been done to investigate this structure

Subset of pion lattice 
QCD analyses

Phys. Rev. D 100, 114512 (2019). barryp@jlab.org 13



Drell-Yan (DY)

𝜋!

𝐴
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Fixed Order Up to NLO
Feynman diagrams for DY 
amplitudes in collinear 
factorization
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Leading Neutron (LN)
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Large 𝑥"
• 𝑥& is fraction of longitudinal momentum 

carried by neutron relative to initial proton
• For 𝑡 to be close to pion pole, has to go 

near 0 – happens at large 𝑥&
• In this region, one pion exchange 

dominates
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How to relate PDFs with lattice observables?

• Make use of good lattice cross sections and appropriate matching 
coefficients

• Structure just like experimental cross sections – good for global 
analysis
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Fitting the Data and Systematic Corrections

Valence quark 
distribution in pion

Wilson coefficients 
for matching

Systematic corrections to parametrize Other potential 
systematic 
corrections the data 
is not sensitive to

•  𝑧/𝐵0 𝜈 : power corrections •  12 𝑃0 𝜈 : lattice spacing errors

•  𝑒"3! 4"2 𝐹0 𝜈 : finite volume corrections
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Experiments to probe pion structure

21

Drell-Yan (DY)
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Threshold Resummation

Significant contributions to cross section occur in soft gluon 
emissions and follow the pattern

Initial quark line from 
hadron

Annihilates with antiquark 
to produce virtual photon
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JAM analysis with threshold resummation

• Highly dependent on perturbative approach
• NLO and NLO+NLL double Mellin methods 

better on theoretical grounds 0.75 0.8 0.85 0.9 0.95 1x
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Including lattice QCD data from HadStruc

• Can we learn more about pion PDFs with the inclusion of lattice QCD 
data?
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Effective 𝛽 from 1 − 𝑥 #"##
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Calculations 
from QCD do 
not predict 
𝛽'(( = 2



What about the transverse 
momentum dependence?
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𝑝$-dependent spectrum in the nucleon

• Small-𝑝) data – TMD factorization – partonic transverse momentum
• Large-𝑝) data – collinear factorization – recoil transverse momentum
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Large 𝑝$ Drell-Yan in the nucleon
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Collider (PHENIX) data are well 
described by 𝒪 𝛼5/ in collinear 
factorization
Phys. Rev. D 100, 014018 (2019).

Fixed target (Fermilab E288) data are challenging 
to describe at 𝒪 𝛼"# or even with resummation
(NLL)
Phys. Rev. D 100, 014018 (2019).



Semi-Inclusive DIS (SIDIS)

• Incoming electron beam 
emits a virtual photon
• Breaks up the target 

proton
• Another hadron (like a 

pion) is detected
(fragmentation function)
• Measure the 𝑝*

dependence of the 
detected hadron

barryp@jlab.org 30

𝑙 + 𝑃 → 𝑙+ + ℎ + 𝑋



Large 𝑝$ SIDIS in the nucleon
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Collider (H1) data are well 
described by 𝒪 𝛼5/ in collinear 
factorization
Phys. Rev. D 71, 034013 (2005).

Fixed target (COMPASS 17) data are challenging 
to describe at 𝒪 𝛼5 (top) or 𝒪 𝛼5/ (bottom)
Phys. Rev. D 98, 114005 (2018).



0 1 2 3

pT (GeV)

10°2

10°1

100

E
d3 æ

/d
p3

(p
b/

G
eV

2 )

6.00 GeV < Q < 7.00 GeV

𝑝$-dependent spectrum in the nucleon

• Various factorization theorems break down in certain regions of 𝑝)
• Errors are related with 𝒪(𝑝)/𝑄) (low-𝑝)) or 𝒪(𝑚/𝑝)) (large-𝑝))

barryp@jlab.org 32

Fixed Order 
Collinear 
Factorization

TMD 
factorization



What about the pion?

• Available 𝑝)-dependent Drell-Yan data from E615
• Fixed Target data (no collider pion data)

barryp@jlab.org 33

Phys. Rev. D 39, 92 (1989).
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Drell-Yan (DY)
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• 𝑝* dependent DY in collinear factorization
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Data and theory comparsion

• Data are rather 
noisy
• Pion’s smaller 

gluon component 
than in the proton 
may lead to easier 
description
• Large 

normalization 
uncertainty here
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What’s next?

• We now have a good understanding of collinear structures of pions
and protons
• Not all non-perturbative momentum structure is in the longitudinal 

direction
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3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs
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First, a few nice references from theory 
standpoint
• This list is in no way complete

TMD handbook: arXiv:2304.03302
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Types of TMDs

• 8 types of TMDs 
described by the 
polarization of 
quarks and hadron
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Types of TMDs

• 8 types of TMDs 
described by the 
polarization of 
quarks and hadron
• Focus here only on 

the unpolarized 
TMDs

barryp@jlab.org 42
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Success at small-𝑝$ in nucleon

• MAP and Artemide groups have fit TMDs to low-𝑝) collider and fixed 
target Drell-Yan (and sometimes SIDIS) data
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JHEP 10 (2022) 127

MAP23

arXiv:2305.07473
ART23
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What about the pion?

• Available 𝑝)-dependent Drell-Yan data from E615
• Fixed Target data (no collider pion data)
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Phys. Rev. D 39, 92 (1989).
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Historical pion TMDs A. Vladimirov
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JHEP 10, 090 (2019).

MAP pions

Phys. Rev. D 107, 104014 (2023).



Our analysis in JAM

For the remainder of the talk, I will outline:
• Theoretical structure for TMDs
• Are collinear distributions related?

• How we implement TMD observables in a global analysis
• Results of the analysis
• First of its kind in some ways – will explain along the way

• Interesting avenues for the future
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Our analysis in JAM

• We are interested in the non-perturbative structure, with a 
motivation for studying pion structure
• Only available data that we have are from low-energy fixed target 𝜋𝐴

DY experiments
• We must also understand the nuclear environment
• Perform a simultaneous extraction of pion and proton (nuclear) TMDs
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Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• We can learn about the coordinate space correlations of quark fields 

in hadrons
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
50barryp@jlab.org



Factorization for low-𝑞% Drell-Yan

• Like collinear observable, a hard part with two functions that describe 
structure of beam and target
• So called “𝑊”-term, valid only at low-𝑞*
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Evolution equations for the TMD PDF
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Rapidity scale

Collins-Soper (CS) 
kernel

Has its own renormalization group equation

Anomalous dimension 
of CS kernel

Anomalous dimension 
of TMDPDF

Renormalization scale



Small 𝑏% operator product expansion

• At small 𝑏*, the TMD PDF can be described in terms of its OPE:

• where @𝐶 are the Wilson coefficients, and 𝑓-/𝒩 is the collinear PDF
• Breaks down when 𝑏* gets large

53barryp@jlab.org



𝑏∗ prescription

• A common approach to regulating large 𝑏* behavior

• At small 𝑏*, 𝑏∗ 𝑏* = 𝑏*
• At large 𝑏* , 𝑏∗ 𝑏* = 𝑏123

54

Must choose an appropriate value; 
a transition from perturbative to 
non-perturbative physics
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Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏*, have to non-perturbatively describe large 𝑏*
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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TMD PDF within the  𝑏∗ prescription
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Low-𝑏!: perturbative
high-𝑏!: non-perturbative

Relates the TMD at 
small-𝑏! to the collinear
PDF
⇒ TMD is sensitive to 
collinear PDFs

𝑔"/𝒩(&): intrinsic non-perturbative structure of 
the TMD
𝑔(: universal non-perturbative Collins-Soper 
kernel

Controls the perturbative 
evolution of the TMD

Collins, Soper, Sterman, NPB 250, 199 (1985).



TMD factorization in Drell-Yan 

• In small-𝑞) region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription

57

Non-perturbative 
pieces

Perturbative 
pieces

Can these data constrain the 
pion collinear PDF?

Non-perturbative piece of the CS kernel barryp@jlab.org



Nuclear TMD PDFs

• The TMD factorization allows for the description of a quark inside a 
nucleus to be @𝑓-/7
• However, the intrinsic non-perturbative structure will in-principle 

change from nucleus-to-nucleus
• Want to model these in terms of protons and neutrons as we don’t 

have enough observables to separately parametrize different nuclei
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Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton 

• Each object on the right side independently obeys the CSS equation
• Assumption that the bound proton and bound neutron follow TMD 

factorization

• Make use of isospin symmetry in that 𝑢/𝑝/𝐴 ↔ 𝑑/𝑛/𝐴, etc.
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@𝑓-/7 𝑥, 𝑏* , 𝜇, 𝜁 =
𝑍
𝐴
@𝑓-/8/7 𝑥, 𝑏* , 𝜇, 𝜁 +

𝐴 − 𝑍
𝐴

@𝑓-/9/7 𝑥, 𝑏* , 𝜇, 𝜁



Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., 
Phys. Rev. Lett 129, 242001 (2022).

• Where 𝑎𝒩 is an additional parameter to be fit
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A few words on nuclear dependence

• The ratios from the E866 
experiment provided a look 
to nuclear effects in TMDs 
as well as the importance 
of nuclear collinear effects
• Ignoring any nuclear 

corrections in TMDs and 
collinear PDFs
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Including nuclear dependence

• Better description 
when including the 
nuclear dependence 
in the collinear PDF 
and TMD
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Datasets in the 𝑞%-dependent analysis

• Total of 383 number of points
• All fixed target, low-energy data
• We perform a cut of 𝑞*123 < 0.25 𝑄
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Parametrizations of the TMDs

• First perform single fits of these data to explore various aspects
• Many types of parametrizations have been used in the past
• For the “intrinsic” non-perturbative TMD, we perform fits with each 

of the following

barryp@jlab.org 64

Gaussian Exponential
Gaussian-to-
Exponential



Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV

barryp@jlab.org 65



Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV
• Could treat as separate 

datasets – separate 
normalizations:

barryp@jlab.org 66



MAP parametrization

• A recent work from the MAP collaboration (Phys. Rev. D 107, 014014 
(2023).) used a complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barryp@jlab.org 67

Universal CS kernel



Resulting 𝜒' for each parametrization
• MAP gives best 

overall
• How significant?
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𝑍-scores

• A measure of significance with 
respect to the normal distribution
• Null hypothesis is the expected 𝜒#

distribution
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𝑍-scores

• Example of 
significance of the 
𝜒# values with 
respect to the 
expected 𝜒#
distribution
• Those that are 

absent - 𝑍 is 
effectively infinite
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Perform the Monte Carlo

• We use the MAP parametrization
• Now, we can include the pion collinear PDF and its collinear datasets
• Include an additional 225 collinear data points
• Simultaneously extract

1. Pion TMD PDFs
2. Pion collinear PDFs
3. Proton TMD PDFs
4. Nuclear dependence
5. Non-perturbative CS kernel
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Data and theory agreement

• Fit both 𝑝𝐴 and 𝜋𝐴 DY data and achieve good agreement to both
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Extracted pion PDFs

• The small-𝑞* data do not constrain much the PDFs
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Conditional density

• We define a quantity in which describes the ratio of the 2-
dimensional density to the integrated, 𝑏*-independent number 
density, dependent on “𝑏* given 𝑥”

74barryp@jlab.org



Resulting TMD PDFs 
of proton and pion
• Shown in the range 

where pion and proton 
are both constrained
• Broadening appearing 

as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Average 𝑏%
• The conditional expectation value of 𝑏* for a given 𝑥

• Shows a measure of the transverse correlation in coordinate space of 
the quark in a hadron for a given 𝑥
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Resulting average 𝑏%
• Pion’s 𝑏* 𝑥⟩ is 
5.3 − 7.5𝜎 smaller 
than proton in this 
range
• Decreases as 𝑥

decreases
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Possible explanation

• At large 𝑥, we are in a valence region, where only the valence quarks 
are populating the momentum dependence of the hadron

bT
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Possible explanation

• At small 𝑥, sea quarks and potential 𝑞X𝑞 bound states allowing only for 
a smaller bound system

bT
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Transverse EMC effect

• Compare the 
average 𝑏* given 𝑥
for the up quark in 
the bound proton to 
that of the free 
proton
• Less than 1 by          
∼ 5 − 10% over the 
𝑥 range
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What about LHC energies?

• Fixed-target energies: sensitive to non-perturbative TMD structures
• Large portion of 3𝑊 spectrum in large-𝑏= region

• LHC energies: sensitive to perturbative calculations
• Have opportunity to study collinear distributions
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• From Bury, et al. JHEP 118 (2022).

• Studies about the uncertainties of the PDFs relative to data

High energy PDF uncertainties
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Moos, Scimemi, Vladimirov, Zurita, arXiv:2305.07473



Uncertainties from JAM PDFs only

• Bands come 
from varying 
only the 
collinear PDFs
• High precision in 

ATLAS and LHCb
data indicate 
potential 
constraining 
power
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Individual quarks

• Green: full 
contributions
• Red (looks purple): 

contribution when 𝑢 in 
beam PDF and X𝑢 in 
target
• Blue: corresponding 
𝑑�̅�
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Points not (or only briefly) mentioned in this talk

There are additional ways to implement the TMD phenomenologically
• Qiu-Zhang method: Qiu, Zhang, PRD 63, 114011 (2001).

• 𝜁-prescription: see e.g. SV17: Eur. Phys. J. C 78, 89 (2018).

• Hadron structure oriented (HSO) approach: Phys. Rev. D 106, 034002 (2022).

Full 𝑞*-spectrum described by

:;
:-!

= W+ Y, Y = FO − ASY
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Entire 𝑞! range

• Describing the entire spectrum has never 
been done in phenomenology
• We have shown the ability to perform a 

global analysis separately of the large-𝑞*
and small- 𝑞* regions in the pion
• Tackle the challenging “asymptotic region”
• Can we combine these analyses in the 𝜋-

sector?
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Future experiment – pion SIDIS

𝑒𝑁 → 𝑒!𝑁′𝜋𝑋
•Measure an outgoing pion 

in the TDIS experiment
• Gives us another observable 

sensitive to pion TMDs
• Needed for tests of 

universality
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Outlook

• Future studies needed for theoretical explanations of these 
phenomena
• Important to study various hadronic systems to provide a more 

complete picture of strongly interacting quark-gluon systems 
emerging from QCD
• Lattice QCD can in principle calculate any hadronic state – look to 

kaons, rho mesons, etc.
• Future tagged experiments such as at EIC and JLab 22 GeV can 

provide measurements for neutrons, pions, and kaons
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Backup
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Issues with Perturbative Calculations

• If 𝜏 is large, can potentially spoil the perturbative calculation
• Improvements can be made by resumming log 1 − 𝑧 < terms
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=𝑆 is the center of mass 
momentum squared of 

incoming partons



Keep the first order term in 
the expansion –
“expansion” method

Methods of resummation – Mellin-Fourier

• Threshold resummation is done in conjugate space
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Two choices occur when isolating the hard part

Keep cosine intact –
“cosine” method



Method of resummation – double Mellin

• Alternatively, perform a double Mellin transform

• Double Mellin transform is theoretically cleaner and sums up terms 
appropriately
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Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼? log 𝑁 # 𝛼% log(𝑁) … --

NNLO 𝛼%# log 𝑁 @ 𝛼?# log 𝑁 # , log 𝑁 A … --

… … … … …
NkLO 𝛼%B log 𝑁 #B 𝛼%B log 𝑁 #BCD , log 𝑁 #BC# … 𝛼%B log 𝑁 #BC#8 +⋯93

Make sure only counted once!
- Subtract the matching
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Reduced Ioffe time pseudo-distribution (Rp-ITD)

• Lorentz-invariant Ioffe time pseudo-distribution:
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𝜈 = 𝑝 ⋅ 𝑧
“Ioffe time”

𝑧 = (0,0,0, 𝑧>)
Quark and antiquark 
fields Gauge link

Observable is the reduced
Ioffe time pseudo-
distribution (Rp-ITD)

Ratio cancels 
UV divergences



Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

Claim: Red terms are power suppressed in (1 − 𝑧) and wouldn’t contribute 
to the same order as the yellow terms
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Generalized Threshold resummation

• Write the (𝑧, 𝑦) coefficients in terms of (𝑧E , 𝑧F), and for the red 
terms, you get:

• This is not power suppressed in (1 − 𝑧E) or (1 − 𝑧F) but instead the 
same order as the leading power in the soft limit 
• Generalized threshold resummation in the soft limit does not agree 

with the MF methods
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G. Lustermans, J. K. L. Michel, and F. J. Tackmann, 
arXiv:1908.00985 [hep-ph]. 



Goodness of fit

• Scenario A: 
experimental data 
alone
• Scenario B: 

experimental + lattice, 
no systematics
• Scenario C: 

experimental + lattice, 
with systematics
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Agreement with the data

• Results from 
the full fit and 
isolating the 
leading twist 
term
• Difference 

between bands 
is the 
systematic 
correction
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Resulting PDFs

• PDFs and 
relative 
uncertainties
• Including lattice 

reduces 
uncertainties
• NLO+NLLDY

changes a lot –
unstable under 
new data
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A word on Scale

• In the 𝑝)-integrated Drell-Yan and Leading Neutron observables, only 
one hard scale appears, 𝑄#
• Sensible scale for the PDFs

• However, in 𝑝*-dependent DY, two hard momenta appear, 𝑄 as well 
as 𝑝*
• Ambiguous which scale to choose

• We run fits to scales of 𝜇# = 𝑄#, 8!
#

#
, 𝑝*# , 2𝑝* #

• Best description of the data with 𝜇# = 8!
#

#
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Effects of Each Dataset

• Not much 
impact from 
the transverse-
momentum 
dependent DY 
data
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Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the 
flavor-dependent pieces of the TMD PDF as
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Kinematics in 𝑥3, 𝑥'
• Using the kinematic 

mid-point from each 
of the bins, we show 
the range in 𝑥D and 
𝑥#
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Parametrizations

• We can test whether or not the 𝑥-dependence is important for these 
functions (it is!)
• For these 𝑔- functions, we have the following

• 4 free parameters for each scheme (5 for Gaussian-to-Exponential)
• We may also open up these for each flavor in the proton (𝑢, 𝑑, and 
𝑠𝑒𝑎) and for the pion (𝑣𝑎𝑙, 𝑠𝑒𝑎)
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Kinematics with 11 GeV

• Still a cut on 𝑊"# = 1.04 GeV#, but SIDIS requires more phase space
• Hardly anything available with 𝑧 = 0.2, 𝑃G,* = 0.2 GeV
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Trust perturbative region

• Method to keep the q𝑊 term unaltered by 𝑏∗ mechanism up to a 
certain 𝑏123
• Non-perturbative effects kick in at 𝑏123
• Smooth function as 1st and 2nd derivatives are continuous at 𝑏123
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