

Two-Photon Exchange Contribution to the Electron-Neutron Elastic Scattering Cross Section Using the Super BigBite Spectrometer in Hall A Ezekiel Wertz - William & Mary

What is Ordinary Matter?

Ordinary matter in the universe is made of atomic nuclei which is a composite of subatomic particles known as protons/neutrons (the nucleon). Studying the building blocks of all nuclei provides a better fundamental understanding of the universe.

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \right) \quad \begin{array}{l} Q^2 = -q^2 \\ \tau = Q^2/4M_L^2 \\ \epsilon = (1+2) \\ \end{array}$$

Rosenbluth Separation for Nucleon FFs

 $\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4M_NQ^2}\frac{E'}{E}\right)^2 |M_{\gamma}|^2$ $= \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \right)$ $= \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \sigma_R = \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon \sigma_L + \sigma_T \right)$

 $M_{m{\gamma}}$ is invariant amplitude

is fine structure constant

 σ_{Mott} is the scattering from a point-like particle

Method used extensively for studying proton

nTPE experiment will use this method for the first on neutron

For the SBS Collaboration

Proton FF Ratio Discrepancy

Red = Polarization Transfer Measurements Black = Super Rosenbluth

First measurement of the Rosenbluth Slope From Da (RS) for the neutron using the ratio method. analysis Data taken January & February 2022 for a known), total of 19 days at 2 different kinematic values. Exploiting the linearity of the reduced cross section extracts neutron FFS.

Dueteron target & BigBite Spectrometer includes Gas Electron Multipliers (GEMs), GRINCH, Timing Hodoscope, Calorimeters

Super BigBite **BigBite Magnet**

Two primary measurment methods: 1. Rosenbluth Separation (Cross-Section data) 2. Polarization Transfer Rosenbluth: 1. Consistent with 1.0 2. Identical spatial dependences 3. Sensitive to TPE Polarization Transfer: 1. Disagress by 3-4 sigma 2. Charge distribution is more spatially spread out than magnetization distribution 3. Insensitive to TPE	2D Histogram of HCal Position Difference, no cuts (u) (u) $(u$
S nTPE Experiment $\frac{MCAL}{(m)} \begin{array}{c} Q^{A2} \\ (GeV^{A2}) \\ (m) \\ 11.0 \\ 4.5 \\ 11.0 \\ 4.5 \\ 1.6 \\ 3.2 \end{array} \begin{array}{c} Nucleon \\ P(GeV) \\ $	SBS8 & SB Field 100%
$Relation to Cross-Sections:$ $Relation to Cross-Sections:$ $R_{corrected,\epsilon} = \frac{\sigma_{Mott}^{n}(1+\tau_{p})}{\sigma_{Mott}^{p}(1+\tau_{n})} \times \frac{\epsilon \sigma_{L}^{n} + \sigma_{T}^{n}}{\epsilon \sigma_{L}^{p} + \sigma_{T}^{p}}$ $R_{corrected,\epsilon} = \frac{\sigma_{Mott}^{n}(1+\tau_{p})}{\sigma_{Mott}^{p}(1+\tau_{n})} \times \frac{\epsilon \sigma_{L}^{n} + \sigma_{T}^{n}}{\epsilon \sigma_{L}^{p} + \sigma_{T}^{p}}$ $Physics result:$ $A \equiv \frac{R_{corrected,\epsilon_{1}}}{R_{corrected,\epsilon_{2}}} = B \times \frac{1+\epsilon_{1}S_{c}^{n}}{1+\epsilon_{2}S_{c}^{n}}$ $\approx B \times (1 + \Delta \epsilon \cdot S_{c}^{n}))$ Rosenbluth Slope From Data, Proton Global data (from the ratio method. analysis of e-p cross-section take as bruary 2022 for a known), kinematic info, Physics Result!	Raw $Calibrations \\ Event \\ Reconstruction \qquad \qquad$
linearity of the ets neutron FFS. $S_{c}^{n(p)} = \sigma_{L}^{n(p)} / \sigma_{T}^{n(p)}$	detection efficiency of protons. $R_{Corr}^{QE} = \frac{(Y)}{(Y)}$ Nuclear and Corre
Substrations Nucleon Am Substrations Super Bird Super Bird Bird Super Bird Bird	$R = R_{Co}^{PE}$ Error A Systematic Rosenblut TPE for Rosenblut TPE for 1. Afansev, A. scattering" <i>Prog</i> 2. Alsalmi, S., Electron-Neutro This work is su Fellowship. I we student K ato Ex
INCH, BigBite Magnet & Hadron Calorimeter (HCal)	A technicians a

2D Histogram of HCal Position Difference. with cuts $y_{HCal} - y_{expect}$ (meter) Difference, no cuts Std Dev reliminary $-1 \qquad 0 \qquad 1 \qquad \text{m}^2$

upported in part by NSF grant DGE-715351 and the JSA/JLab Graduate would like to thank my advisor David Armstrong and fellow graduate vans for guidance and insight. I would like to thank the Jefferson Lab Hall nd scientists, and the members of the SBS Collaboration for installing the SBS appartus and collecting the data for my thesis.

Analysis Status

Outlook

In-progress (me):

Refine yields script by implementing interpolated functions and sideband analysis.

Refine HCal proton efficiency script and method. Compare to Monte Carlo Simulation.

Created script for data & simulation comparison.

Implement method for backgrounds based on anticut. Implement acceptance & fiducial cuts.

Create script for physics result.

In-progress (collaboration):

Dedicated effort to implement nuclear & radiative corrections.

Efforts for 2nd pass mass replay are underway, would be quality enough for preliminary result.

Determine error analysis, mainly systematics.

eferences & Acknowledgments

et al. "Two-Photon exchange contribution in elastic electron-proton g. Part Nucl. Phy. 95, 245 (2017)

et al. "Measurement of the Two-Photon Exchange Contribution to the on Elastic Scattering Cross-Section." (2020). Proposal# E12-20-010