Neutron Elastic Form Factor Ratio from Recoil Polarization

Sarashowati Dhital

Hampton University Department of Physics

For the SBS Collaboration

This work is supported by DOE DE-SC0013941 and JSA

Motivation

- Previous experiments have measured GEn/GMn ratio from the polarization of the recoiling nucleon at Q^2 of 0.45, 1.13 and 1.45 $(GeV/c)^2$
- GEn-II:
 - Polarized He-3 (Effective polarized neutron target)
 - High Q^2 reach of upto 10 $(GeV/C)^2$
- GEn-RP (Recoil Polarization):
 - Unpolarized Deuterium (Unpolarized quasi-free neutron target)
 - High Q^2 of 4.5 $(GeV/C)^2$
- Deuteron RP -Less prone to nuclear corrections -Important cross check to validate the He-3 polarized target method
- If the new polarimetry technique with charge exchange proves feasible, then the Q^2 reach of deuteron RP could be similar to that of polarized He3 target

Experimental Layout

- GEn-RP will measure GEn/GMn using two polarimetry techniques at Q² = ~4.5 (GeV/c)²
- Beam Polarization = ~80%
- Target: 15 cm LD2 (unpolarized)
- Electron (BB) Arm: Measures scattered electrons
- Hadron (SBS) Arm: Measures scattered nucleons

Recoil Polarization Technique

Kernphysik, Eine Einführung Von Prof. Dr. rer. nat. Theo Mayer-Kuckuk Universität Bonn Ieft -T T Spin-zero nucleus

- Applicable to both protons & neutrons
- Recoil Polarization components related to form factor.
- Nucleon polarimetry : strong LS coupling connects nucleon polarization to spatial asymmetry

Recoil Polarization Technique

V. Punjabi et al., Phys. Rev. C71 (2005) 05520

FIG. 15: Schematic drawing showing the precession by angle χ_{θ} of the P_{ℓ} component of the polarization in the dipole of the HRS.

Analyzing Power For Elastic n-p Scattering

- Ay for n-p scattering (forward neutron) falls rapidly with increasing neutron momentum
- Ay for n-p charge-exchange (forward proton) is large at sufficiently large neutron momentum(θp~ few degrees)
- No apparent strong incident momentum dependence for charge-exchange Ay

Figure of Merit of Analyzing Power

Acceptance-weighted integral of squared analyzing power determines statistic error

SBS Neutron Polarimeter

- Charge Exchange (CE) Polarimeter High momentum forward protons towards HCAL after CE np→pn
- 8 UVa GEM planes
- 1 Fe Analyzer
- Proton Recoil (PR) Polarimeter, Low momentum large angle recoiling,
 protons after np→np
- Active CH Analyzer
- 2 Sections, one each side of CE Polarimeter
- Each section has 2 UVa GEM planes & Plastic Scintillators
- Descoping of beamline –side setup is now considered

SBS GEMS Commissioning for Gen-RP

6/14/2023

Summary

- The SBS program: Multiple form factor measurement experiments at high Q^2 values.
- GEn-RP: Proof of Principle experiment -2 recoil polarimetry techniques.
- GEn/GMn at Q^2 higher than the highest published kinematic point.
- Experimental figure-of-merit information on the polarimetry & analyzing powers -Optimize future measurements of GEn/GMn to reach higher Q^2 values using recoil polarimetry techniques.
- GEn-RP -Scheduled to run in spring (Jan-Feb 2024)

Acknowledgements

- Any advisor Dr. Michael Kohl
- 🚃 Staff Scientists: Dr. Holly Szumila-Vance, Dr. Brad Sawatzky
- 🕵 🛛 Postdocs: Dr. Xinzhan Bai (UVa), Dr. Thir Narayan Gautam (HU)
- 🦸 Graduate Students: Ezekiel Wertz (W&M), Anuruddha Rathnayake, John Boyd, Sean Jeffas (UVa), ManjuKrishna Suresh(HU)
- The SBS Collaboration
- A The Department of Energy and Jefferson Science Associates

