CaFe

Noah Swan

Outline

- Review the CaFe experiment
- Rate Estimates
- Data Calibration
- Data Quality Checks
- Initial Group Results

Nuclear Shell Model

- The nucleus consists of *A* nucleons interacting via the Strong Interaction
- Nucleons move independently in a mean field generated by the other (A-1) nucleons
- Successfully describes bulk properties of nuclei
 - Shell structure
 - Excitation energies
 - Spin, parities
 - Nuclear magic numbers
- Typical momentum less than Fermi momentum, k_F~250 MeV/C

Limitations of the Nuclear Shell Model

- Measured (e,e'p) proton knockout from valence shells
 - Found ~60-70% of predicted occupancy
- Corrections
 - Long range correlations
 - Short range correlations (SRCs)
 - 20-25%

Short Range Correlations

- SRCs are temporary and require close proximity between nucleons
- Interact via the strong N-N interaction
- High relative momentum (k_r>k_F~250 MeV/c)
- Unchanged center-of-mass momentum

CaFe Motivation

- Which nucleons form pairs?
- Compare number of high momentum protons in ⁴⁰Ca and ⁴⁸Ca
 - ⁴⁰Ca has filled the 1s, 1p, and 2s/1d proton and neutron shells
 - How do the additional 8 f_{7/2} neutrons of ⁴⁸Ca change the number of SRC pairs?
- Compare number of high momentum protons in ⁴⁸Ca and ⁵⁴Fe
 - How does the additional 6 f_{7/2} protons of ⁵⁴Fe change the number of SRC pairs?
- Measure A(e,e'p) on d, ⁹Be, ^{10,11}B, ¹²C, ^{40,48}Ca, ⁵⁴Fe, and ¹⁹⁷Au at high and low missing momentum
 - ⁹Be-¹⁰B-¹¹B-¹²C quartet and ⁴⁰Ca-⁴⁸Ca-⁵⁴Fe triplet

Hall C: CaFe Experimental Setup

- A(e,e'p)
- 10.6 GeV
- Detect scattered electrons in the Super High Momentum Spectrometer (SHMS)
- Detect knocked-out protons in the High Momentum Spectrometer (HMS)

Hall C: Experimental Setup Cont.

- E_o = 10.6 GeV
- E'=8.55 GeV
- Θ_e =8.3 Degrees
- Q² =2.1 (GeV/c)^2
- $P_{miss} \approx 400 \text{ MeV/c}$
 - |P_p| = 1.325 GeV/c
 - $\Theta_{p} = 66.4^{\circ}$
- $P_{miss} \approx 150 \text{ MeV/c}$
 - |P_p| = 1.820 GeV
 - Θ_p = 48.3 Degrees

Rate Estimates

- Prior to data taking
- Provide second independent rate estimates to inform run plan
- Used SIMC to simulate counts for 1 hour of
 - MF ¹²C
 - SRC ²D
 - Simulation did not account for
 - The nuclear proton transparency (PT)
 - Run Time (t)
 - A 50% safety factor
- Corrected initial MF ¹²C and SRC ²D counts by introducing a scale factor
 - #MF_C12 = #Simc_C12 * 0.5 * t * PT
- Scaled the MF ¹²C counts to other targets
 - #MF_A = #MF_C12 * (PT_A)/(PT_C12) * (Thick_A)/(Thick_C12) * (t_A)/(t_C12)
- SRC counts treated similarly

MF			
Target	Run Time (Hr)	Counts (10^5)	
D2	8	26	
Be9	8	10	
B10	8	60	
B11	8	66	
C12	8	55	
Ca40	8	56	
Ca48	8	56	
Fe54	8	29	

SRC			
Target	Run Time (Hr)	Counts (10^2)	
D2	8		55
Be9	8		83
B10	8		50
B11	8		55
C12	8		52
Ca40	8		52
Ca48	8		52
Fe54	8	9	31

SHMS Drift Chamber Drift Distance

• Multiplicity cut, nhit ==1

CaFe Data Quality Checks

Data vs Simulation

- Each run for every target has unique
 - Charge (charge) [mC]
 - HMS Hadron Tracking Efficiency (Ehtrk) [%]
 - SHMS Electron Tracking Efficiency (Eetrk) [%]
 - Live Time (Elt) [%]
 - All exceed 98%
- Correct raw data
 - Corrected counts = counts / ((Ehtrk * Eetrk * Elt) * (charge));

H(e,e') elastic Data vs Sim

Preliminary Group Results

Simple CaFe Projection

M. Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

17

Summary

- Progress
 - Rate Estimates
 - Experiment
 - Data calibration
 - Data quality checks
- Future Work
 - Further data quality checks
 - Paper on ratios in a few months
 - Work on cross section and cross section ratios
 - Determine spectrometer efficiencies and radiative corrections

Questions?

Back Up Slides

Experiment Run

- Initial CaFe run on ²D, ⁹Be, ^{10,11}B, ¹²C, ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe
 - Sep. 16th to the 29th
 - Successfully acquired all necessary data during our run time
 - Accelerator could not provide expected $80 \mu A$
 - 40-60µA
- Second CaFe run on ¹⁹⁷Au
 - Feb 22nd-24th
- Preparation and Contribution
 - Took numerous shifts prior to CaFe to gain experience
 - Helped ensure real time data quality
 - Took 5 Target Operator owl shifts and 2 Shift Leader swing shifts

SHMS Hodoscope Beta vs X Focal Plane

22

SHMS Hodoscope Beta vs Y Focal Plane

SHMS Drift Chamber Drift Time vs Wire Num

SHMS Hodoscope Beta

SHMS Calorimeter eTrkNorm

SHMS Drift Chamber Residual

X, X'

U U' X X' V V'

27

V, V'

U, U'

SHMS Calorimeter eTrkNorm vs X Focal Plane

SHMS Calorimeter eTrkNorm vs Y Focal Plane

29

HMS Calibration Checks

HMS MF Hodo Beta

Ca40, Ca48, Fe54, MF Targets

MF C12(e,e'p) Data vs Sim

SRC D2(e,e'p) Data vs Sim

D2, Be9, B10,11, C12 MF Targets

Ca40, Ca48, Fe54 SRC Targets

D2, Be9, B10,11, C12 SRC Targets

Results

Figure 2: Cartoon of individual scintillator paddles to illustrate the various timing corrections applied.

Quasi-elastic (e,e') Cross-section Ratio

- (e,e') per nucleon cross-section ratio of nucleus A to deuterium is constant for 1.5 < x < 2
- Plateau implies Nucleon momentum distributions differ by a scale factor
- Plateau increases slowly with nuclear mass, suggesting the number of high momentum nucleons increase linearly with A

Schmookler et al. (2019) Nature, 566, 354. https://doi.org/10.1038/s41586-019-0925-9

A(e,e')

$$\frac{d^{3}\sigma}{d\Omega_{e}dw} = \frac{N_{e}[\theta_{e},w]}{\left(\frac{\#tgt \ nuclei}{cm^{2}}\right)(\#e)d\Omega_{e}dw}$$
$$N_{e}[\theta_{e},w] = \frac{Y\left[\theta_{e},w\right]}{EDT \ CLT \ SHMS_{e}} * (Radiative \ Correction)$$

$\frac{d^{6}\sigma}{d\Omega_{e} \, dw \, dE_{m} \, dP_{m} \, d\varphi_{p}} = \frac{Y \left[P_{e}, P_{p}\right]}{EDT_{e} \, EDT_{p} \, CLT \, SHMS_{e} \, HMS_{e}} * (Radiative \, Correction)$

Cuts (+/-2**o**)

- MF
 - Skim
 - EDTM_tdcTimeRaw == 0
 - epCoinTime < 50 (ns)
 - PID
 - 0.8 < petot_trkNorm < 1.3
 - Acceptance
 - -10 < hdelta < 10 (%)
 - 0 < edelta < 22 (%)
 - Collimator Cut +/- 8%
 - evtyp >= 4
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV)

- SRC
 - Skim
 - EDTM_tdcTimeRaw == 0
 - epCoinTime < 50 (ns)
 - PID
 - 0.8 < petot_trkNorm < 1.3
 - Acceptance
 - -10 < hdelta < 10 (%)
 - 0 < edelta < 22 (%)
 - Collimator Cut +/- 8%
 - evtyp >= 4
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - 0.375 +/- 0.025 < pmiss < 0.700 +/- 0.1 (GeV/c)
 - 1.2 +/- 0.1 < xbj
 - theta_rq < 40 +/- 4 (deg)

Heavy SRC

SRC Heavy: Q2

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < (deg)

Heavy SRC 4-Momentum Transfer

SRC Heavy: Pm vs xbj

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

SRC Heavy: Pm

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 +/-0.025 < pmiss < 0.700 +/- 0.1 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

Heavy SRC Missing Momentum

SRC Heavy: xbj

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 +/- 0.1 < xbj
 - 0 < theta_rq < 40 (deg)

Heavy SRC x-Bjorken

SRC Heavy: theta_rq

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 +/- 4 (deg)

Heavy SRC In-Plane (recoil) Angle

SRC Au197: HMS Collimator

- Cuts
 - Acceptance
 - Collimator Cut: scale +/- 8%
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

SRC Au197: SHMS-Collimator

SHMS X-Collimator [cm]

- Cuts
 - Acceptance
 - Collimator Cut: scale +/- 8%
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

Light SRC

SRC Light: Q2

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

Light SRC 4-Momentum Transfer

SRC Light: Pm vs xbj

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 +/-0.025 < pmiss < 0.700 +/- 0.1 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

SRC Light: Pm

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 +/-0.025 < pmiss < 0.700 +/- 0.1 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

Light SRC Missing Momentum

SRC Light: xbj

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 +/- 0.1 < xbj
 - 0 < theta_rq < 40 (deg)

Light SRC x-Bjorken

SRC Light: th_rq

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 +/- 4 (deg)

Light SRC In-Plane (recoil) Angle

SRC C12: HMS Collimator

- Cuts
 - Acceptance
 - Collimator Cut: scale +/- 8%
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < 40 (deg)

SRC C12: SHMS-Collimator

SHMS X-Collimator [cm]

- Cuts
 - Acceptance
 - Collimator Cut: scale +/- 8%
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - 0.375 < pmiss < 0.700 (GeV/c)
 - 1.2 < xbj
 - 0 < theta_rq < (deg)

Heavy MF

MF Heavy: Q2

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 (GeV/c)
 - -0.02 < emiss < 0.09 (GeV)

Heavy MF 4-Momentum Transfer

MF C12: Em & Pm

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV)

MF Au197: Em & Pm

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV)

MF Heavy: Em

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 (GeV/c)

Heavy MF Missing Energy (Nuclear Physics)

MF Heavy: Pm

- Cuts
 - Acceptance
 - Collimator Cut
 - Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 (GeV)

Heavy MF Missing Momentum

MF Au197: HMS Collimator

• Cuts

- Acceptance
 - Collimator Cut +/- 8%
- Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 (GeV/c)
 - -0.02 < emiss < 0.09 (GeV)

MF Heavy: SHMS-Collimator

• Cuts

- Acceptance
 - Collimator Cut
- Kinematics
 - 1.8 < Q2 (GeV/c)^2
 - pmiss < 0.270 (GeV/c)
 - -0.02 < emiss < 0.09 (GeV)

Light MF

MF Light: Q2

- Cuts
 - Acceptance
 - Collimator Cut +/- 8%
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV) period
 Provide the second seco

Light MF 4-Momentum Transfer

MF Light: Em

- Cuts
 - Acceptance
 - Collimator Cut +/- 8%
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV) period
 Provide the second seco

Light MF Missing Energy (Nuclear Physics)

MF Light: Pm

- Cuts
 - Acceptance
 - Collimator Cut +/- 8%
 - Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV) page
 Provide the second second

Light MF Missing Momentum

MF C12: HMS Collimator

• Cuts

- Acceptance
 - Collimator Cut +/- 8%
- Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV)

MF C12: SHMS-Collimator

• Cuts

- Acceptance
 - Collimator Cut +/- 8%
- Kinematics
 - 1.8 +/- 0.1 < Q2 (GeV/c)^2
 - pmiss < 0.270 +/- 0.02 (GeV/c)
 - -0.02 < emiss < 0.09 +/- 0.005 (GeV)

SHMS Collimator