Optimization of Gas Electron Multiplier (GEM) Detectors targeting $G_E^p - V$ Experiment at Hall A

V. Haththotuwa Gamage

Department of Physics - University of Virginia

HUGS, June 2023

A D > A D > A

	· · · · · · · · · · · · · · · · · · ·	
Hathth otunua		
	Mainage 1	

- Super Bigbite Programme(SBS) at Jefferson Lab
- Measurement of Proton Form Factor Ratio at high Q^2 Thesis Experiment
- Gas Electron Multiplier (GEM) Detectors made at UVA
- High Background problem and solutions
- Summary and Future work

Experiments and Measurements

- G_M^n : measure G_M^n/G_M^p up to $Q^2=13.5 GeV^2$ LD_2 target- data taking done
- G_E^n -II : measure G_E^n/G_M^n up to $Q^2 = 10 GeV^2$ polarized ³He target- run one done
- $G_E^n RP$: measure G_E^n/G_M^n up to $Q^2 = 4.5 GeV^2$ LD_2 target Jan 2024
- G_E^p -V : measure G_E^p/G_M^p up to $Q^2 = 12 GeV^2$ using a target of LH_2 Fall 2024

Figure: Bigbite Spectrometer in G_M^n

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Electron-Nucleon Scattering : Single Photon Approximation

- Amplitude for electron-nucleon scattering : $-iM = j^{\mu}(-ig_{\mu\nu}/q^2)J^{\nu}$
- Electron transition current : $j^{\mu}=-e\overline{u}_{e}(k')\gamma^{\mu}u_{e}(k)$
- Nucleon transition current : $J^{\mu} = \overline{u}(p')[F_1(Q^2)\gamma^{\mu} + (\kappa/2M)F_2(Q^2)i\sigma^{\mu\nu}q_{\nu}]u(p)$
- $F_1(Q^2)$ and $F_2(Q^2)$, known as Dirac and Pauli Form Factors, are the only unknowns in nucleon transition current equation.
- Internal structure of the nucleon can be parameterized using $F_1(Q^2)$ and $F_2(Q^2)$ which are scalar functions of $Q^2(=-q^2)$.
- Sach's form factors : Fourier transforms of the electric and magnetic moments distributions in the Breit frame
 - electric form factor : $G_E = F_1 (\kappa Q^2/4M^2)F_2$
 - magnetic form factor : $G_M = F_1 + \kappa F_2$

シック 単則 ふゆきょう きょう きょう

Rosenbluth Separation and polarization transfer methods are two method to measure Proton Form Factor ratio

Figure: Three data points to be obtained in G_E^p -V. Solid line is a polynomial fit for existing data, extrapolated as dashed line.

ELE NOR

For recoil polarization there is no normal component, two polarization components are in reaction plane

$$hP_eP_tI_0 = -2hP_e\sqrt{\tau(1+\tau)}G_E^{\rho}G_M^{\rho}\tan(\frac{\theta_e}{2})$$

$$hP_eP_II_0 = hP_e\frac{1}{m_p}(E+E'_e)\sqrt{\tau(\tau+1)}(G_M^{\rho})^2\tan^2(\frac{\theta_e}{2})$$

Here $\tau = Q^2/4m_p^2$; E_e Initial electron energy; E'_e Final electron energy; θ_e scattering angle and $l_0 \sim (G_E^p)^2 + \frac{\tau}{\epsilon}(G_M^p)^2$

$$rac{G_E^p}{G_M^p} = -rac{P_t}{P_l} rac{E_e+E_e'}{2m_p} tan(rac{ heta_e}{2})$$

Form factor ratio is obtained without measuring the actual cross section and without changing the beam energy or detector angle \Rightarrow reduce sources of systematic uncertainties.

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

Layout of the Super Bigbite Spectrometer

Figure: 3-D view of the Super Bigbite Spectrometer in G_F^p -V configuration

- Large solid angle acceptance of 75 msr for BigBite Spectrometer
- High background rate $(500 kHz/cm^2)$ capable tracking detectors

UVA built GEMs in SBS

- \bullet Front tracker: 8 GEM layers, 6 of active area of 150 \times 40 \textit{cm}^2 and 2 of active area of 200 \times 60 \textit{cm}^2
- \bullet Back tracker: 8 layers, active area of 200 \times 60 \textit{cm}^2

Figure: SBS in use as a proton polarimeter

• Out of 6 layers of 150 imes 40 cm^2 4 are UV and 2 are XW (new)

= - na @

GEMs made at UVA

Triple GEM detectors

Figure: Cross section of a Triple GEM detector

Figure: SBS 50cm x60cm module

Figure: Cross section of a Triple GEM detector

- Using 3 GEM foils back to back to increase the gain (roughly 20 per foil \rightarrow 20 X 20 X 20 = 8000)
- Capabilities
 - High spatial resolution : 70 μm
 - Can handle high background rate : 500 kHz/cm²
- However, HV supply uses a low cost resistive divider which is a limitation

Figure: UV 40cm x 150cm module

Difficulty in maintaining the electric field strength in the GEM

At lower rates

At higher rates

- Currents in and out of the GEM electrodes increase with the rate
- They severely alter the HV distribution at higher rates
- Voltage drops in protective resistors further weakens the electric field in GEM holes
- Reduced electric field in GEM holes directly leads to gain drop of GEM module

GEM Efficiency significantly drops as beam current increasing

- At GMn the rates were 3x higher than the simulations making the efficiency drop much more severe than expected
- Having 10x more luminosity in GEp-V would be much severe

Possible causes

- High voltage (HV) power supply using a resistive divider is limiting the appropriate field strength in multiple regions in GEM module
- High rates increase the difficulty for tracking

Figure: Efficiency drop with the beam current (GMn data)

Solutions to restore the Field

- use of individual power channels (expensive)
- modify dividers

4 D b 4 A b

• an active HV divider

▲目▶ 三日 のへで

- Individual Power Channels (Parallel power supply) (CAEN DT1415ET)
 - Inefficiency of the divider is lifted. Only the effect of protective resistors remain
- Modified Resistive Divider (Divider GEn)
 - Reduce the resistance by a factor of two to reduce the ratio between currents in and out for the electrodes and the main current through the divider
 - 10 percent increase across GEM3 to compensate for the voltage drop
- Gain of the detector is proportional to the gradient of the graph

Resistive Divider					
Resistor (Ohm)	Divider GEn				
R0	850	425			
R1	550	275			
R2	500	250			
R3	450	250			

Rate (MHz/(cm*cm)

Efficiency maps at JLab

Low beam current on Carbon foil target

30 μA of beam current on ³*He* target

- During GMn front layers dropped below 60 percent efficiency at a beam current of $10\mu A$ on Liquid Deuterium
- No HV modification on layer 1 largest efficiency drop
- Layer 0 is the front most layer on parallel power supply
- Layer 2 uses the modified divider

S A B A B B B A A A

Combining parallel power supply and corrections

before

- Applying the corrections help to recover some of the efficiency lost
- Efficiency maps are for $30\mu A$ of beam current on ${}^{3}He$ target
- Luminosity scans are required to further study the behaviour

< ∃ >

31= 990

- High rate studies
 - GEMs lose efficiency when exposed to high rates
 - All the solutions tested at UVA were implemented at G_F^n Experiment
 - Hopefully we are in good shape for G_E^p -V
- Finish tracking detector commissioning work for G_E^n -RP and G_E^p -V
- Start working on physics analysis and simulation to investigate the rate mismatch

- Our UVA group members : Nilanga Liyanage, Huong Nguyen, Xinzhan Bai, Siyu Jian, John Boyd, Sean Jeffas, Bhashitha Thuthimal Dharmasena and Minh Dao
- SBS collaboration
- Jlab staff for continuous support
- US Department of Energy, Office of science, Office of Nuclear physics award number DE-FG02-03ER41240

Image: A matrix

★ E ▶ ★ E ▶ E = のQQ

Backup Slides

三日 のへで

・ロト ・ 日 ・ ・ ヨ ・ ・

Test Setup at UVA to simulate high rates environment

- 10×10 cm² chamber is placed 40 cm away from the xray source
- 50x60 cm² chamber is placed 70 cm away from the xray source
- Both these chambers possess XY type readouts
- X-ray generator specifications
 - Photon energy range: up to 50 keV
 - Output flux: 56 MHz/cm² on the surface of GEM (50 keV/1 μA)
- 0.5 percent of x-rays are converted into MIPs
- Charge deposition equivalent to MIP rate of 20 MHz/cm^2 can be reached
- Measurements :
 - Readout current which is analogous to the gain
 - Voltage at each electrode

particle	front chamber	first rear chamber	second rear chamber
and threshold	at 325 cm	at 457 cm	at 556 cm
γ , 100 KeV	80,000	6,700	1,800
γ , 300 MeV	140	12	5.5
e^- ,1 GeV	0.3	0.05	0.02
e^+ ,1 GeV	0.2	0.03	0.01
π^- ,1 GeV	8	1.2	0.54
π^+ ,1 GeV	14	2.1	0.95

Table 1: Estimated rates in kHz per cm^2 at different distances from the target for different particles integrated above the given thresholds; for 40 cm LH target and 75 μA

Figure: GEp-V rates

Table 8:	Predicted	l coincidenc	e rates	(counts]	per hou	Ir)
----------	-----------	--------------	---------	-----------	---------	-----

$Q^2 (\text{GeV/c})^2$	3.5	4.5	6.0	8.5	10.	12.	13.5	16.	18.
d(e, e'p)	40700	26600	3110	1345	1240	244	56.7	47.0	7.9
d(e, e'n)	17600	12000	1600	627	580	114	26.5	22.0	3.72
p(e, e'p)	273000	82000	9300	4400	5000	850	200	175	30
$p(\gamma, \pi^+ n)$	2920	4030	13500	—		—	—	—	—

Figure: GMn rates

- Last two side polarimeter layers for the G_E^n -RP is being commissioned
- All the side polarimeter layers will be moved to the Hall during the summer
- Most of the high voltage upgrade will happen before the second run of G_E^n -II
- Tracking inefficiencies caused due to hardware issues will be mitigated

Figure: Completed layer

Figure: Layer in the work

Figure: Vertically mounted layers

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Observations

- Voltage across drift, and the first transfer region goes up noticeably
- GEM 3 loses a significant amount of voltage
- Effect is less severe in GEM 2 and GEM 1

Figure: Triple GEM regions

31= 990

Impact from protective resistors

- protective resistors were still in use when the parallel power supply was used
- even with parallel power supply still the current is not linear, but we can correct for that

A D > <
A D >
A

Figure: AVD Schematic

Credit : Hans Muller and his group at Cern

- we are going to give this a try too
- parallel power supply is the best solution but expensive

Prototype Detector for MOLLER Experiment -Building

Leakage current distribution

Current profile of good sector

Steps involved in building the prototype

- Visual inspection of the GEM foils and the readout
- Sector High voltage testing of the GEM foils
- Preparation of the frames
- Stretching and gluing foils to the frames
- Assembling the triple GEM detector
- Complete the high voltage distribution
- Ready for testing

Setting up sector HV test

MOLLER readout

Microscopic image

June, 2023

8/12

Prototype Detector for MOLLER Experiment -Testing

Moller prototype in testing

- Shielding serves the purpose of noise reduction
- Cosmic and X-Ray data to verify the functionality
- Readout design optimization to avoid noisy channels
- SRS readout was used for data acquisition

X-Ray 2-D hit map

• 5 GEM layers out of electromagnetic field, high rate, large quantity of combinations

Tracking algorithm in a nutshell:

- Perform 1D clustering of strips along each dimension in each GEM chamber
- Form all possible 2D combinations within calorimeter-defined region
- Divide each tracking layer into a uniform 2D rectangular grid, accumulate a list of 2D hit candidates in each grid bin (bin size 1 x 1 cm²)
- Loop all possible combinations from hits in outermost layers (within search region)
- · Form straight-line projection
- Loop all possible combinations from each inner layer (minimum 3 layers)
- Find the hit combination with best X²/ndf

Tracking algorithm credit goes to Prof. Andrew Puckett and Dr. Weizhi Xiong

 This is the same event as previous slide, but requiring max ADC sample on a strip greater than 100, a typical offline threshold for cluster maxima that is higher than online threshold

= approximate size of calorimeter-constrained track search region at each layer

Hall A Winter Meeting 2022

Slide courtesy of Prof. Andrew Puckett

ICONN 2/11/22

$$\left(\frac{d\sigma}{d\Omega}\right)_{reduced} = \frac{\epsilon(1+\tau)}{\tau} \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} = G_M^2 + \frac{\epsilon}{\tau} G_E^2, \tag{13}$$

where $(d\sigma/d\Omega)_{exp}$ is a measured cross section. A fit to several measured reduced cross section values at the same Q^2 , but for a range of ϵ -value, gives independently $\frac{1}{\tau}G_{Ep}^2$ as the slope and G_{Mp}^2 as the intercept, as shown in Fig. 3; the data displayed in this figure are taken from [And94].

Haththotuwa Gamage (UVA) HUGS 2023

[1] Sauli, F. (2016) "The Gas Electron Multiplier (GEM): Operating principles and applications," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 805, pp. 2–24. Available at: https://doi.org/10.1016/j.nima.2015.07.060.

[2] Kondo Gnanvo, Applications of Micro Pattern Gas Detectors at JLAB, Juy 10, 2020

[3] Nilanga Liyanage, Gas Electron Multiplier Tracker, SoLID GEM Group

[4] Perdrisat, C. F., Punjabi, V., Vanderhaeghen, M. (2007). Nucleon electromagnetic form factors. Progress in Particle and Nuclear Physics, 59(2), 694-764.

◆□ → ◆□ → ◆ = → ◆ = → ● = の Q · 12/12