# Quarkonia as tools to study the multi-dimensional structure of the nucleon

Samuel F. Romera

University of the Basque Country (EHU)

# Hampton University Graduate Studies (HUGS) Program at Jefferson Lab, 2023

eman ta zabal zazu



HUGS2023 May 30 - June 16, 2023 Newport News, VA The 38th Annual Hampton University Graduate Summer Program at Jefferson Lab



samuel.fernandez@ehu.eus

Multi-dimensional structure of the nucleon

06/15 HUGS 2023 1/13

#### Outline

- 1. Motivation
- 2. Unpolarized TMDFF
- 3. Rapidity divergences and soft function
- 4. TMDFF refactorization
- 5. TMDFF calculation
- 6. Current state of the research

#### Why quarkonia?

From an experimental point of view...

- Easy to produce and detect  $\langle$  as J/ $\psi$ ,  $\psi$ (2S) and  $\Upsilon$ (nS)
- Quarkonia production is one of the processes on which the EIC is most focused

From a theoretical point of view...

- Quarkonia are useful laboratories to study the interplay between pQCD and non-perturbative QCD We'll see later!
- There are much more physics yet to be understood and much more work yet to be done in quarkonium



production

#### **Motivation**

#### Goal



- main motivation The is complete the  $J/\psi$  production in ep scattering
- contribution by the The light-quark fragmentation done have been in arXiv:2007.05547 [hep-ph]
- Typical process carried by EIC:  $J/\psi$  production one of the most important

**HUGS 2023** 

But we can also find the contribution of gluon TMDFF in other processes!

#### **Unpolarized TMDFF**



How can we describe the process when a quark is produced in a hard interaction and then fragments into a detected hadron? TMD fragmentation function

Multi-dimensional structure of the nucleon

**HUGS 2023** 

### **Overview of rapidity divergences and Soft Function (SF)**



Now the rapidity divergences are described by the regulator. We obtain something like that...

### **Overview of rapidity divergences and Soft Function (SF)**



At this point, the Soft Function enters in the game to cancel all the spurious rapidity divergences.

$$S(\mathbf{b}_{\perp}) = \frac{Tr}{N_c} < 0 | \left[ S_n^{\dagger} S_{\bar{n}} \right] (0^+, 0^-, \mathbf{b}_{\perp}) \left[ S_{\bar{n}}^{\dagger} S_n \right] (0^+, 0^-, \mathbf{0}) | 0 >$$

Multi-dimensional structure of the nucleon

6/13

**HUGS 2023** 

#### **Gluon TMDFF refactorization**



 $D_{g \to J/\psi}(z, \mathbf{b}_T) = \sum d_{g \to Q\bar{Q}(n)}(z, \mathbf{b}_T) < 0 |\mathcal{O}^{J/\psi}(n)| 0 >$ n

$$D_{g \to J/\psi}(z, \mathbf{b}_{T}) = \sum_{n} d_{g \to Q\bar{Q}(n)}(z, \mathbf{b}_{T}) < 0 |\mathcal{O}^{J/\psi}(n)|0 >$$

$$\bar{u}(p)v(\bar{p}) = -2 \xi^{\dagger}(\mathbf{q} \cdot \boldsymbol{\sigma})\eta,$$

$$\bar{u}(p)\gamma^{\mu}v(\bar{p}) = L^{\mu}_{j} \left( 2E_{q} \xi^{\dagger}\sigma^{j}\eta - \frac{2}{E_{q} + m_{c}} q^{j} \xi^{\dagger}(\mathbf{q} \cdot \boldsymbol{\sigma})\eta \right),$$

$$\bar{u}(p)(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})v(\bar{p}) = (P^{\mu}L^{\nu}_{j} - P^{\nu}L^{\mu}_{j}) \left( \frac{2m_{c}}{E_{q}} \xi^{\dagger}\sigma^{j}\eta + \frac{2}{E_{q}(E_{q} + m_{c})}q^{j} \xi^{\dagger}(\mathbf{q} \cdot \boldsymbol{\sigma})\eta \right) + L^{\mu}_{j} L^{\nu}_{k} \xi^{\dagger}\{[\sigma^{j}, \sigma^{k}], \mathbf{q} \cdot \boldsymbol{\sigma}\}\eta,$$

$$\begin{split} \bar{u}(p)(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda} - \gamma^{\lambda}\gamma^{\nu}\gamma^{\mu})v(\bar{p}) \\ &= L^{\mu}_{\ i} L^{\nu}_{\ j} L^{\lambda}_{\ k} \bigg( -E_{q} \ \xi^{\dagger}\{[\sigma^{i},\sigma^{j}],\sigma^{k}\}\eta \ + \ \frac{q^{i}}{E_{q}+m_{c}} \ \xi^{\dagger}\{[\sigma^{j},\sigma^{k}],\mathbf{q}\cdot\boldsymbol{\sigma}\}\eta \\ &+ \frac{q^{j}}{E_{q}+m_{c}} \ \xi^{\dagger}\{[\sigma^{k},\sigma^{i}],\mathbf{q}\cdot\boldsymbol{\sigma}\}\eta \ + \ \frac{q^{k}}{E_{q}+m_{c}} \ \xi^{\dagger}\{[\sigma^{i},\sigma^{j}],\mathbf{q}\cdot\boldsymbol{\sigma}\}\eta\bigg) \\ &- \frac{2}{E_{q}} \left( P^{\mu}L^{\nu}_{\ i}L^{\lambda}_{\ j} + L^{\mu}_{\ i}L^{\nu}_{\ j}P^{\lambda} + L^{\mu}_{\ j}P^{\nu}L^{\lambda}_{\ i} \right) \left(\xi^{\dagger}q^{i}\sigma^{j}\eta \ - \ \xi^{\dagger}q^{j}\sigma^{i}\eta\bigg). \end{split}$$

HUGS 2023

Multi-dimensional structure of the nucleon

$$\begin{split} D_{g \to J/\psi}(z,\mathbf{b}_{T}) &= \sum_{n} d_{g \to Q\bar{Q}(n)}(z,\mathbf{b}_{T}) < 0 |\mathcal{O}^{J/\psi}(n)| 0 > \\ & \langle \chi^{\dagger}\sigma^{j}T^{a}\psi \ \mathcal{P}_{c\bar{c}',c\bar{c}} \ \psi^{\dagger}\sigma^{i}T^{a}\chi \rangle = 4m_{c}^{2} \ \eta^{\prime\dagger}\sigma^{j}T^{a}\xi^{\prime}\xi^{\dagger}\sigma^{i}T^{a}\eta & \\ & \langle \chi^{\dagger}\psi \ \mathcal{P}_{c\bar{c}',c\bar{c}} \ \psi^{\dagger}\chi \rangle = 4m_{c}^{2} \ \eta^{\prime\dagger}\xi^{\prime}\xi^{\dagger}\eta, & \\ & \langle \chi^{\dagger}T^{a}\psi \ \mathcal{P}_{c\bar{c}',c\bar{c}} \ \psi^{\dagger}T^{a}\chi \rangle = 4m_{c}^{2} \ \eta^{\prime\dagger}T^{a}\xi^{\prime}\xi^{\dagger}T^{a}\eta, \\ & \langle \chi^{\dagger}(-\frac{i}{2}\overrightarrow{D}^{m})T^{a}\psi \ \mathcal{P}_{c\bar{c}',c\bar{c}} \ \psi^{\dagger}(-\frac{i}{2}\overrightarrow{D}^{n})T^{a}\chi \rangle = 4m_{c}^{2} \ \eta^{\prime m}q^{n} \ \eta^{\prime \dagger}T^{a}\xi^{\prime}\xi^{\dagger}T^{a}\eta, \\ & \langle \chi^{\dagger}(-\frac{i}{2}\overrightarrow{D}^{m})\sigma^{i}T^{a}\psi \ \mathcal{P}_{c\bar{c}',c\bar{c}} \ \psi^{\dagger}(-\frac{i}{2}\overrightarrow{D}^{n})\sigma^{j}T^{a}\chi \rangle = 4m_{c}^{2} \ q^{\prime m}q^{n} \ \eta^{\prime \dagger}\sigma^{i}T^{a}\xi^{\prime}\xi^{\dagger}\sigma^{j}T^{a}\eta \end{split}$$

samuel.fernandez@ehu.eus

Multi-dimensional structure of the nucleon



Multi-dimensional structure of the nucleon

### Feynman Diagrams

p' p' р р X Ρ Ρ

Leading order

#### Feynman Diagrams



samuel.fernandez@ehu.eus

Multi-dimensional structure of the nucleon

HUGS 2023

11/13

Some results

$$\begin{array}{c} \text{Virtual} \\ \text{SDC} \\ \text{Virtual} \\ \text{SDC} \\ \end{array} \qquad d^{a,b,c,d,e}(z,\mathbf{b}_{\perp}) = d^{LO}(z,\mathbf{b}_{\perp}) \frac{\alpha_s C_A}{2\pi} \left[ \frac{1}{\epsilon_{UV}} \left( \frac{\beta_0}{2C_A} + \ln \frac{\delta^{+2}}{P^{+2}} \right) - \frac{1}{\epsilon_{IR}} \right] \\ + 2 \ln^2 \frac{\delta^+}{P^+} + 2 \ln \frac{\delta^+}{P^+} \ln \frac{\mu^2}{4m_c^2} + \ln \frac{\mu^2}{m_c^2} \\ - 4 \ln^2 2 + \frac{10}{3} \ln 2 + 2 - \pi^2 + \frac{123 - 10n_f}{27} \right] \\ \text{Virtual SF} \\ \text{Sv} = \frac{\alpha_s C_A}{2\pi} \left[ \frac{-2}{\epsilon_{UV}^2} + \frac{2}{\epsilon_{UV}} \ln \frac{\delta^{+2}\zeta}{(P^+)^2\mu^2} - \ln^2 \frac{(\delta^+)^2}{\mu^2} - \frac{\pi^2}{2} \right] \frac{\text{arXiv:1502.05354}}{[\text{hep-ph]}} \\ \frac{R_g d^{a,b,c,d,e}(z,\mathbf{b}_{\perp})}{d^{LO}(z,\mathbf{b}_{\perp})} = \frac{\alpha_s C_A}{2\pi} \left[ \frac{1}{\epsilon_{UV}^2} + \frac{1}{\epsilon_{UV}} \left( \frac{\beta_0}{2C_A} + \ln \frac{\mu^2}{\zeta} \right) - \frac{1}{\epsilon_{IR}} \right] \\ + \frac{1}{2} \ln^2 \frac{\delta^{+2}}{\mu^2} + 2 \ln^2 \frac{\delta^+}{P^+} + 2 \ln \frac{\delta^+}{P^+} \ln \frac{\mu^2}{4m_c^2} + \ln \frac{\mu^2}{m_c^2} \\ \text{Real contribution!} - \frac{3\pi^2}{4} - 4 \ln^2 2 + \frac{10}{3} \ln 2 + 2 + \frac{123 - 10n_f}{27} \right] \end{array}$$

samuel.fernandez@ehu.eus

Multi-dimensional structure of the nucleon

HUGS 2023

#### Current state of the research

Two papers in progress...

Gluon TMDFF for J/ $\psi$  production

In collaboration with Ignazio Scimemi (Complutense University of Madrid - IPARCOS) and Miguel G. Echevarría (EHU)

Papers finished before August!

...or so I hope

#### J/psi TMD shape function

In collaboration with Pieter Taels (University of Antwerp) and Miguel G. Echevarría (EHU)