

Study on the $\phi\pi^0$ system in search for exotic mesons at GlueX

Jiawei Guo for the GlueX Collaboration

HUGS2023, Newport News June 15, 2023

Introduction **Quantum Chromodynamics**

- In the Standard Model, Quantum Chromodynamics (QCD) describes the strong interactions of quarks mediated by gluons.
- The bound state of quarks is called "hadron"
- In nature, hadrons appear to have 2 configurations according to the **Quark Model**
 - **Meson:** quark-antiquark state($q\bar{q}$) 0
 - **Baryon:** three-quark state(qqq) 0
- However, QCD allows other "exotic" configurations, for example:

tau

neutrino

W boson

Vμ

muon

neutrino

Ve

electron

neutrino

Carnegie Mellon University

Introduction —— Mesons in the Quark Model

- Mesons: quark-antiquark state($q\bar{q}$)
- Total spin $J = L \oplus S$
 - Spin $S = S_1 + S_2 = 0, 1$
 - The orbital angular momentum L = 0, 1, 2, ...
- Parity P
 - $\circ \vec{r} \rightarrow -\vec{r}$
 - $\circ P = (-1)^{L+1}$
- Charge conjugation *C*
 - Particle \rightarrow Antiparticle, $q\bar{q} \rightarrow \bar{q}q$
 - $\circ \quad C = (-1)^{L+S}$
- Notation

$${}^{(2S+1)}L_J \quad {}^{1}S_0, \; {}^{3}S_1, \; {}^{1}P_1, \; {}^{3}P_0, \; {}^{3}P_1, \; {}^{3}P_2, \dots \\ J^{PC} \quad 0^{-+}, 1^{--}, 1^{+-}, 0^{++}, 1^{++}, 2^{++}, \dots$$

- Allowed J^{PC} for $q\bar{q}$ • Exotic J^{PC}
 - $0^{--} 0^{++} 0^{-+} 0^{+-}$ $1^{--} 1^{++} 1^{-+} 1^{+-}$ $2^{--} 2^{++} 2^{-+} 2^{+-}$ $3^{--} 3^{++} 3^{-+} 3^{+-}$ $4^{--} 4^{++} 4^{-+} 4^{+-}$ $5^{--} 5^{++} 5^{-+} 5^{+-}$

Carnegie Mellon University

Introduction **GlueX** Experiment

- GlueX's primary goal is to search for exotic hybrid mesons
- 12 GeV electron beam
- 9 GeV polarized photon beam
- Liquid hydrogen target(proton)
- exclusive final states
- $257.4 \ pb^{-1}$ total luminosity from all current data

Carnegie Mellon University

Introduction $----\phi\pi^0$ system

- Reaction: $\gamma p \rightarrow \phi \pi^0 p$ with $\phi \rightarrow K^+ K^-, \pi^0 \rightarrow \gamma \gamma$
- $\phi \pi^0$ is one of the Vector-Pseudoscalar systems

 J^{PC} : ϕ 1⁻⁻, π^0 0⁻⁺

- May find strange-quark counterparts to Z states in the charm and bottom sectors
- Possible J^{PC} for $\phi \pi^0$ system

L	J ^{PC}			
0		1+-		
1	0	1	2	
2		1+-	2+-	3+-

- The 0⁻⁻ and 2⁺⁻ are exotic quantum numbers, which are forbidden by quark model
- The 2⁻⁻ is a state never seen before in light quark systems

Carnegie Mellon University

Event Selection

- GlueX Phase-I & Phase-II data
 - GlueX-II is ongoing. Only use the 2020 dataset
- Select exclusive reaction:

$$\gamma p \rightarrow K^+ K^- \pi^0 p$$

• A kinematic fit is performed on each event.

Basic selections and cuts:

- 1. $\chi^2/ndf < 3.5$
- 2. $8.2 GeV < E_{Beam} < 8.8 GeV$
- 3. $-0.01 < MM^2 < 0.01$
- 4. $0.11 GeV < M_{\pi^0} < 0.16 GeV$
- 5. $1.00 GeV < M_{\phi} < 1.04 GeV$
- 6. Cut $1.4 GeV < M_{\pi^0 p} < 1.8 GeV$

Carnegie Mellon University

Event Selection

One peak at 1.3GeV, the other at 1.4GeV

- $\circ \quad f_1(1285) \to a_0(980) \pi^0 \to K^+ K^- \pi^0$
- $\circ \quad \eta(1405)/f_1(1420) \rightarrow K^*\overline{K} \rightarrow K^+K^-\pi^0$
- With Dalitz plot $M^2(\pi^0 K^+)$ vs $M^2(K^+K^-)$
 - $M(\phi \pi^0) < 1.6 GeV, K^*$ leaks into ϕ selection
 - $M(\phi \pi^0) > 1.6 GeV$, K^* and ϕ separate

Carnegie Mellon University

$\eta(1405)/f_1(1420)$

- Select K^{*+} or K^{*-}
- In the $\phi \pi^0$ spectrum, the peak around 1400 is $K^*\overline{K}$ resonance
 - $\circ \quad \eta(1405) \to K^* \overline{K} \to K^+ K^- \pi^0$
 - $\circ f_1(1420) \to K^* \overline{K} \to K^+ K^- \pi^0$

1.4

12

Entries/10 MeV

7000

6000

5000

4000

3000

2000

1000

0[[]

$f_1(1285)$

- $f_1(1285) \to a_0(980)\pi^0 \to K^+K^-\pi^0$
- $a_0(980)$ can decay to K^+K^- with a tail leaking into the ϕ mass region
- Select $a_0(980)$ from 0.98GeV to 1.02GeV and reject K^*
- The peak around 1280 is $f_1(1285)$ resonance

Carnegie Mellon University

Background Subtraction

- With the *sPlot* formalism, we can assign weights to each events to statistically subtract the background
 - M. Pivk & F. Le Diberder. sPlot: A statistical tool to unfold data distributions, <u>NIM A, 555 1-2, p.356-369 (2005)</u>
 - Main idea: calculate weights by fitting with known probability distribution functions on a discriminating variable $M(K^+K^-)$
- Compare $M(\phi \pi^0)$ for sWeighted data with unweighted data
 - Most of the 2 background peaks are suppressed

Carnegie Mellon University

Summary

- GlueX Phase-I & Phase-II data
- 2 peaks on the $\phi \pi^0$ invariant mass spectrum are from background
 - $\circ \quad f_1(1285) \to a_0(980) \pi^0 \to K^+ K^- \pi^0$
 - $\circ \quad \eta(1405)/f_1(1420) \to K^*\overline{K} \to K^+K^-\pi^0$
- *sPlot* can remove most of the $K^+K^-\pi^0$ background
 - Some background events are left for $M(\phi \pi^0) < 1.6 GeV$
- Partial Wave Analysis
 - Fit with $1^+[S, D], 1^-[P]$ amplitudes
 - $1^+[D]$ amplitude is dominant with a bump around 1.8 GeV
 - $1^+[S]$ and $1^-[P]$ amplitudes are relatively flat

• GlueX acknowledges the support of several funding agencies and computing facilities: <u>www.gluex.org/thanks</u>

Carnegie Mellon University

Backup slides

Introduction

Mesons in the Quark Model

- Quarks are fermions with $\frac{1}{2}$ spin.
- Total spin $J = L \oplus S$
 - Spin $S = S_1 + S_2 = 0, 1$
 - The orbital angular momentum

 $L = 0, 1, 2, \dots$

• Notation: ${}^{(2S+1)}L_J$ ${}^{1}S_0, {}^{3}S_1, {}^{1}P_1, {}^{3}P_0, {}^{3}P_1, {}^{3}P_2, \dots$

• Parity P

- $\circ \vec{r} \rightarrow -\vec{r}$
- Spin is invariant under parity operator
- $\circ P[\psi(\vec{r})] = \psi(-\vec{r}) = \eta_P \psi(\vec{r})$
- With $Y_{LM}(\pi \theta, \pi + \varphi) = (-1)^L Y_{LM}(\theta, \varphi)$ Wavefund
- Intrinsic parity of fermion-antifermion: -1
- $\circ P = (-1)^{L+1}$

J	L = 0	L = 1	
<i>S</i> = 0	0	1	
<i>S</i> = 1	1	0, 1, 2	

Wavefunctions: $\Psi(\vec{r}, \vec{S}) = \psi(\vec{r}) \chi(\vec{S})$ $\psi(\vec{r}) = R_{NL}(r) Y_{LM}(\theta, \varphi)$ Under parity operator: $\psi(-\vec{r}) = R_{NL}(r) Y_{LM}(\pi - \theta, \pi + \varphi)$

Carnegie Mellon University

Introduction

Mesons in the Quark Model

- Charge conjugation *C*
 - Particle \rightarrow Antiparticle, $q\bar{q} \rightarrow \bar{q}q$
 - Effectively take $\vec{r} \rightarrow -\vec{r}$ like parity. We first get a factor $(-1)^{L+1}$.
 - The spin function is exchanged, $|\alpha, \beta > \rightarrow |\beta, \alpha >$
 - For S = 1, symmetric spin function \Rightarrow (+1).
 - For S = 0, antisymmetric spin function $\Rightarrow (-1)$.

 $\circ C = (-1)^{L+S}$

• Notation
$${}^{(2S+1)}L_J$$
 ${}^{1}S_0$, ${}^{3}S_1$, ${}^{1}P_1$, ${}^{3}P_0$, ${}^{3}P_1$, ${}^{3}P_2$, ...
 J^{PC} 0^{-+} , 1^{--} , 1^{+-} , 0^{++} , 1^{++} , 2^{++} , ...

HUGS2023 - Jiawei Guo

. . .

S = 1 $|1,+1\rangle = |+,+\rangle$ $|1,0\rangle = \frac{1}{\sqrt{2}} (|+,-\rangle + |-,+\rangle)$ $|1,-1\rangle = |-,-\rangle$ S = 0 $|0,0\rangle = \frac{1}{\sqrt{2}} (|+,-\rangle - |-,+\rangle)$

sPlot

- <u>sPlot method</u> can separate different sources of events (signal, bkg)
 - Need a discriminating variable for which the distributions of different sources of events are known
 - Perform fits to probability distribution functions (PDF)
 - Calculate the weight
- Use the $M(K^+K^-)$ as the discriminating variable
- Fit to different PDF sets for events in different $M(\phi \pi^0)$ regions:
 - 1. For $M(\phi \pi^0) < 1.6 GeV$
 - ---- signal: Voigtian distribution
 - ---- K^*K bkg: $(m-m_0)^p e^{-\lambda m}$
 - ---- $a_0(980)$ bkg: Flatte distribution

Carnegie Mellon University

sPlot

- 2. For $M(\phi \pi^0) > 1.6 GeV$
 - Slice $M(\phi \pi^0)$ to 3 bins, fit each bin separately
 - ---- signal: Voigtian distribution
 - ---- bkg, 2nd Chebyshev polynomial $a_2T_2(x) + a_1T_1(x) + 1$

Carnegie Mellon University

Definition of Amplitudes

- Described by 5 angles:
 - Φ between polarization vector and 0 the production plane
 - $cos\theta$, ϕ in the resonance rest frame Ο
 - $cos\theta_H, \phi_H$ in the ϕ rest frame
- **Reflectivity basis:**
 - Amplitudes can be decomposed to Ο reflectivity basis $\epsilon = \pm$
 - Reflectivity is correlated with naturality of the exchange particle
- Naturality: $\tau = P(-1)^J$
 - The produced resonance can be Ο natural or unnatural
- Reflectivity $\epsilon = \tau_i \tau_e$
 - $\circ \tau_i$: Naturality of the produced system($\phi \pi^0$)
 - $\circ \tau_{e}$: Naturality of the exchanged particle

Carnegie Mellon University

HUGS2023 - Jiawei Guo

n'

L

0

1

2

 $0^{--}(-1)$

 $|1^{--}(+1)|2^{--}(-1)|$

 $1^{+-}(-1)$

 y_H

 Z_H

 $(+1)|3^{+-}(-1)|$

Definition of Amplitude

• Amplitudes and Intensity:

$$I(\Phi, \Omega, \Omega_H) = 2\kappa \sum_k \frac{\text{GlueX-doc-4858-v3}}{\left\{ (1 - P_{\gamma}) \left[\left| \sum_{i,m} [J_i]_{m,k}^{(-)} Im(Z) \right|^2 + \left| \sum_{i,m} [J_i]_{m,k}^{(+)} Re(Z) \right|^2 \right] + \left(1 + P_{\gamma} \right) \left[\left| \sum_{i,m} [J_i]_{m,k}^{(+)} Im(Z) \right|^2 + \left| \sum_{i,m} [J_i]_{m,k}^{(-)} Re(Z) \right|^2 \right] \right\}$$
$$Z_m^i(\Phi, \Omega, \Omega_H) = e^{-i\Phi} X_m^i(\Omega, \Omega_H)$$
$$X_m^i(\Omega, \Omega_H) = \sum_{\lambda = -1, 0, 1} D_{m,\lambda}^{J_i*}(\Omega) F_{\lambda}^i D_{\lambda,0}^{1*}(\Omega_H) G$$

- Wigner D Matrix: JM frame → Helicity frame

 λ: helicity of φ
- *F* describes $X \to \phi \pi$

$$\circ \ \ F^i_{\lambda} = \sum_L \left< J_i; \lambda | LS; 0\lambda \right> C^i_L$$

- *G* describes $\phi \to K^+K^-$
- D-wave/S-wave ratio $D/S = C_D^i/C_S^i$

Carnegie Mellon University

L	J ^{PC} (Naturality)			
0		1 ⁺⁻ (-1)		
1	0 ^{−−} (−1)	1 (+1)	2(-1)	
2		1 ⁺⁻ (-1)	2 ⁺⁻ (+1)	3+-(-1)

- Fit from 1.15GeV to 2.65GeV

 30 bins, 50MeV binwidth
 - $1^+[S, D], 1^-[P]$
- Reflectivity $\epsilon = \pm$,
- All spin projection
- All polarization orientation
- *D/S* as a **Real** number
- k = 0/1: nucleon spin non-flip/flip (experimentally indistinguishable)

Possible particle states

- **1**⁺[*S*, *D*], *b*-like
- **1**⁻[**P**], *ρ*-like
- Entries without the black dot "•" are not established.
- b_1 is too close to the threshold
- $\rho(1450)$ is affected by the K^* bkg
- ρ(1700) may be the only possible one

• π^{\pm}	$1^{-}(0^{-})$	 π₂(1670) 	$1^{-}(2^{-+})$
• π ⁰	$1^{-}(0^{-+})$	• $\phi(1680)$	$0^{-}(1^{-})$
• η	$0^+(0^{-+})$	 ρ₃(1690) 	$1^{+}(3^{-})$
• f ₀ (500)	$0^{+}(0^{++})$	ρ(1700)	$1^+(1^{})$
 ρ(770) 	$1^{+}(1^{-})$	• a ₂ (1700)	$1^{-}(2^{++})$
 ω(782) 	$0^{-}(1^{-})$	• $f_0(1710)$	$0^{+}(0^{++})$
 η'(958) 	$0^+(0^{-+})$	X(1750)	$?^{-}(1^{-})$
 <i>f</i>₀(980) 	$0^+(0^{++})$	$\eta(1760)$	$0^{+}(0^{-+})$
• a ₀ (980)	$1^{-}(0^{++})$	 π(1800) 	$1^{-}(0^{-+})$
• $\phi(1020)$	$0^{-}(1^{-})$	$f_2(1810)$	$0^{+}(2^{++})$
• $h_1(1170)$	$0^{-}(1^{+})$	X(1835)	? [?] (0 ⁻⁺)
• <i>b</i> ₁ (1235)	$1^+(1^{+-})$	• $\phi_3(1850)$	0-(3)
• <i>a</i> ₁ (1260)	$1^{-}(1^{++})$	• $\eta_2(1870)$	0+(2-+)
• f ₂ (1270)	$0^{+}(2^{++})$	• $\pi_2(1880)$	$1^{-}(2^{-+})$
 <i>f</i>₁(1285) 	$0^+(1^{++})$	$\rho(1900)$	$1^{+}(1^{})$
 η(1295) 	$0^{+}(0^{-+})$	$f_2(1910)$	$0^{+}(2^{++})$
 π(1300) 	$1^{-}(0^{-+})$	$a_0(1950)$	$1^{-}(0^{++})$
• a ₂ (1320)	$1^{-}(2^{++})$	• f ₂ (1950)	$0^{+}(2^{++})$
 <i>f</i>₀(1370) 	$0^+(0^{++})$	• a ₄ (1970)	$1^{-}(4^{++})$
• $\pi_1(1400)$	$1^{-}(1^{-+})$	$ ho_{3}(1990)$	1+(3)
 η(1405) 	$0^{+}(0^{-+})$	$\pi_2(2005)$	$1^{-}(2^{-+})$
• $h_1(1415)$	$0^{-}(1^{+})$	• f ₂ (2010)	0+(2++)
● <i>f</i> ₁ (1420)	$0^{+}(1^{++})$	f ₀ (2020)	$0^{+}(0^{+}+)$
 ω(1420) 	0-(1)	• f ₄ (2050)	$0^{+}(4^{++})$
$f_2(1430)$	$0^+(2^{++})$	$\pi_2(2100)$	$1^{-}(2^{-+})$
● <i>a</i> ₀ (1450)	$1^{-}(0^{++})$	f ₀ (2100)	$0^{+}(0^{++})$
• $\rho(1450)$	$1^+(1^{})$	$f_2(2150)$	$0^{+}(2^{++})$
 η(1475) 	$0^+(0^{-+})$	ρ(2150)	$1^{+}(1^{-})$
 <i>f</i>₀(1500) 	$0^+(0^{++})$	• $\phi(2170)$	$0^{-}(1^{-})$
$f_1(1510)$	$0^+(1^{++})$	f ₀ (2200)	$0^{+}(0^{++})$
• f ₂ (1525)	$0^+(2^{++})$	f _J (2220)	0+(2++
$f_{5}(1565)$	$0^{+}(2^{++})$		or 4 ^{+ +})
$\rho(1570)$	$1^+(1^{})$	η (2225)	$0^+(0^{-+})$
$h_1(1595)$	$0^{-}(1^{+})$	$ ho_{3}(2250)$	1+(3)
• $\pi_1(1600)$	$1^{-}(1^{-+})$	• f ₂ (2300)	$0^+(2^{++})$
● <i>a</i> ₁ (1640)	$1^{-}(1^{++})$	f ₄ (2300)	$0^{+}(4^{++})$
$f_2(1640)$	0+(2++)	f ₀ (2330)	$0^+(0^{++})$
• $\eta_2(1645)$	0+(2 - +)	• f ₂ (2340)	$0^+(2^{++})$
• $\omega(1650)$	$0^{-}(1^{-})$	$ ho_{5}(2350)$	$1^{+}(5^{})$
• $\omega_3(1670)$	0-(3)	X(2370)	?'(?'')
		f ₆ (2510)	$0^{+}(6^{++})$