A Machine Learning approach for DVCS identification without proton detection

Juan Sebastian Alvarado IJCLab - Orsay

INTRODUCTION

Introduction

- □ CLAS12 @ Hall B provides measurements of particles in the range $2^{\circ} < \theta < 135^{\circ}$.
- □ We aim for Deeply Virtual Compton Scattering event reconstruction as it is a golden channel for GPD measurements

Introduction

But what are GPDs?

- □ At low energy QCD we need structure functions to describe the nucleon structure.
- □ They correlate the transverse position and longitudinal momentum of partons in the nucleon & the spin structure.
- Experimental observables are directly related to Compton Form Factors H

$$\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ i \pi \left[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right] + \mathcal{P} \int_{-1}^{1} dx H^{q}(x,\xi,t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] \right\}$$

Models need to map the \boldsymbol{x} dependence

Introduction

In principle, the measurement of only an electron and a photon is enough to reconstruct a DVCS event. We aim for DVCS event reconstruction without requiring final proton information. **Advantages (with respect to** $ep\gamma$ **detection):** /16

- □ Higher statistics:
 - □ Gives access to a wider phase space for GPD studies.
 - \Box Improves GPD studies at low -t.
 - □ More precise BSA measurements.
- □ Helpful for experiments that do not consider proton detection.

Difficulties:

- $\hfill\square$ The $e\gamma$ final state includes background contributions from the whole DIS spectra.
- $\hfill\square$ Only one exclusivity variable available for cuts: Missing mass of $ep \to e\gamma.$

Therefore, we need a method that ensures DVCS identification: Machine Learning We test the ML approach on experimental data:

- 1. Validation of the method when we include the proton information.
- 2. Application to the case without proton information.

4/16ML approach: Boosted Decision Trees (BDT)

Taken from Coadou, Yann, EPJ Web of conferences, Vol. 55, EDP Sciences. 2013.

A decision tree:

- Scans the given variables looking for the point with maximum separation between classes.
- □ Splits the data recursively until each event lies on a terminal node (leaf) and assigns it a score

Additionally, boosting is:

- Train iteratively a decision tree.
- At each step, focus the training on misclassified events.
- Final classification is based on the majority of votes.

UNPOLARIZED LH₂ Analysis of $ep \rightarrow ep\gamma$

$ep \rightarrow e\gamma p$: Data selection

Analyzed data set Unpolarized liquid hydrogen target. Kinematic window: \square W > 2 GeV. $\Box Q^2 > 1 \text{ GeV}^2$. \Box **q**' > 2 GeV (photon), \square **k**' > 1 GeV (electron), \square **p**' > 0.3 GeV (nucleon). (ω, α)

Exclusivity cuts: We reconstruct ϕ and t in two ways:

- **1.** Using $\gamma *$ and the outgoing photon $\gamma : \Rightarrow \phi(\gamma)$
- **2.** Using $\gamma *$ and the recoil proton *p*: $\Rightarrow \phi(p')$
- $\Box \ \Delta \phi = |\phi(p') \phi(\gamma)| < 2^{\circ},$
- $\Box \Delta t = |t(p') t(\gamma)| < 2 \text{ GeV}^2,$
- \square **P**_{miss} < 1 GeV.

$ep \rightarrow e\gamma p$: Model training

The main contamination channel is $ep \rightarrow ep\pi^0 \rightarrow ep\gamma(\gamma)$.

Introduction Analysis of $ep \rightarrow e\gamma p$ Analysis of $ep \rightarrow e\gamma(p)$ Outlook

$ep \rightarrow e\gamma p$: Background subtraction

To optimize the DVCS event selection, a Boosted Decision Tree (BDT) is trained to classify the events.

- □ Discriminating variables: $\{M_{ep\gamma}^2, M_{e\gamma}^2, \Delta\phi, \Delta t, \theta_{\gamma X}\}$.
- $\hfill\square$ Simulated DVCS and π^0 production events for training.

(a) BDT output distributions for different datasets.

(b) ROC curve of the model and applied cut.

16

$ep \rightarrow e\gamma p$: Background substraction

We extract a dataset with > 89.67% DVCS and < 10.32% DVMP.

UNPOLARIZED LH_2 Analysis of $ep \rightarrow e(p)\gamma$

$ep \rightarrow e\gamma(p)$: Data selection

Kinematic window:

We apply the same kinematic restrictions:

□ W > 2 GeV, □ $Q^2 > 1$ GeV², □ q' > 2 GeV (photon), □ $\mathbf{k}' > 1$ GeV (electron). □ $-\frac{t}{Q^2} < 1$,

Exclusivity cuts:

However, our exclusivity cuts are no longer useful.

BDT training:

- $\hfill\square$ Training for π^0 and DIS.
- Dataset is splitted in two:
 - Events where the photon is in the FT ($\theta_{\gamma} < 5^{\circ}$)
 - □ Events where the photon is in the FD ($\theta_{\gamma} > 5^{\circ}$)

$ep \rightarrow e\gamma(p)$: Comparison with $e\gamma p$ detection

There are more events in general, mostly in the small t region.

$ep \rightarrow e\gamma(p)$: Comparison with $e\gamma p$ detection

There are more events in general, mostly in the small t region.

No proton:proton ratios and $M_{e\gamma X}^2$ for $\theta_{\gamma} > 5^{\circ}$

Raw Beam Spin Asymmetry

 $A_{LU} \equiv \frac{1}{P} \frac{h^+ - h^-}{h^+ + h^-} \sim \frac{p_0 \sin(\phi)}{1 + p_1 \cos(\phi)} \sim \frac{\sin(\phi)}{\sigma_{UU}} \Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - kF_2 \mathcal{E} + \dots \right]$

 $1.8 \text{ GeV}^2 < Q^2 < 2.4 \text{ GeV}^2$

- BSA measurement from CLAS12 analysis note (black)*.
- Raw** BSA from the current analysis with proton detection (red)

12/16

Raw** BSA from the current analysis without proton detection (blue)

*G. Christiaens et al. "Deeply Virtual Compton Scattering on proton: Beam Spin Asymmetry extraction". In: CLAS12 Analysis Note (2021).
** Before subtraction of the residual π⁰ contamination.

TRANSVERSELY POLARIZED NH₃ Analysis of $ep \rightarrow e(p)\gamma$

NH₃ target

CHALLENGE ACCEPTED. This experiment presents additional complications:

 Limited acceptance: 5° < θ < 25°.
 Absence of a DIS event generator with NH₃ target.
 Nuclear target effects.
 Wider distributions are expected.

NH₃ target

The plan for the moment is:

- \Box Make the best with the LH₂ target data.
- □ Analyze data from longitudinally polarized NH₃ target.
- Try other methods (sweights, NNs etc.)
- □ Find the minimum amount of information needed to develop the experiment.

14/16

Figure: Preliminary results when a particle tagger is included.

Summary

- Boosted decision trees presents an alternative for channel selection on an event-by-event basis.
- □ When the final proton is included:
 - DVCS exclusivity variables have a sufficient separation power to allow DVCS and Deep Exclusive π⁰ Production identification in an efficient way.

- $\hfill A$ dataset with at least \sim 90% of DVCS events can be extracted.
- □ When the final proton information is ignored:
 - There is a strong contribution of DIS processes to the background.
 - □ We can recover more events, in comparison to the proton-detected case, and directly benefits the small *t* region.
 - We have smaller statistical error bars on the BSA measurements.

Outlook □ LH₂ target: □ Subtraction of leftover contamination when proton is detected. Background estimation and subtraction when proton is not detected Extract final BSA measurements. Deuterium target: Extraction of nDVCS events. □ Transversely polarized NH₃ target \Box Analyze longitudinally polarized NH₃ target data.

□ Try several ML methods

Thanks

$ep \rightarrow e\gamma p$: Background subtraction

A look to the kinematics:

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state particle (second row).

$ep \rightarrow e\gamma(p)$: Background subtraction

Let's finally look at the kinematics of the extracted dataset

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state for $\theta_{\gamma} < 5^{\circ}$

$ep \rightarrow e\gamma(p)$: Background subtraction

Let's finally look at the kinematics of the extracted dataset

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state for $\theta_{\gamma} > 5^{\circ}$

Introduction Analysis of $ep \rightarrow e\gamma p$ Analysis of $ep \rightarrow e\gamma(p)$ Outlook

$ep \rightarrow e\gamma(p)$: Background subtraction The training of the BDT results in:

16/16

Figure: BDT output distributions for the DIS and π^0 background trainings. in the two θ_γ regions.

ROC reconstruction

Using a different sample, we can reconstruct the ROC curve

Figure: Reconstructed efficiencies as a function of the BDT response.

ROC reconstruction

From the position on the ROC curve and the number of events, we estimate that the original dataset was 54.58% DVCS and 44.16% π^0 production. So we can create an artificial dataset

16/16

Figure: Normalized DVCS exclusivity variables from data(red) and simulated data (black) before BDT cut.

ROC reconstruction

We observe consistency in the results.

Figure: Normalized DVCS exclusivity variables from data(red) and simulated data (black) after BDT cut.

ROC reconstruction

Looking at each component:

(a) Simulated DVCS before (black) and after (red) BDT cut. signal efficiency: 89.03%, 88.81% expected. (b) Simulated π^0 data, reconstructed as DVCS, before (black) and after (red) BDT cut.Background rejection: 84.78%, 84.21% expected.

$ep \rightarrow e\gamma(p)$: Data selection

Figure: Missing mass from the process $ep \rightarrow e\gamma X$ for events with 1 (black), 2 (red) and 3 (blue) photon detections.

$ep ightarrow e\gamma(p)$: Background subtraction

The training of the BDT results in:

Figure: ROC curve of the model for the DIS and π^0 background trainings indicating the applied cut. DIS training gives similar results in both cases.

$ep \rightarrow e\gamma(p)$: Model training

$ep \rightarrow e\gamma(p)$: Background subtraction

Figure: Q^2 , x_B , t and $M_{e\gamma}^2$ distributions, after BDT cut, when the recoil proton is required (red) or not (blue) for $\theta_{\gamma} < 5^{\circ}$.

$ep \rightarrow e\gamma(p)$: Background subtraction

Figure: Q^2 , x_B , t and $M_{e\gamma}^2$ distributions, after BDT cut, when the recoil proton is required (red) or not (blue) for $\theta_{\gamma} > 5^\circ$.

The applied BDT cut leads to the following efficiencies on simulated data:

	$\theta_{\gamma} < 5^{\circ}$	Remaining	$\theta_{\gamma} > 5^{\circ}$	Remaining
		on data		on data
DVCS	83.5%		86.93%	
π^0	3.64%	<10.3%	16.3%	<80%
DIS	0.044%	<1.2%	0.77%	<9.16%

- DVCS data can be extracted when photons are detected in the Forward Tagger
 - Remaining DIS contamination can be taken into the systematics.
- Remaining contamination is the upper bound coming from the hypothesis that 70% (80%) of the data in the FT (FD) is background data.
- □ From simulations, we estimate that events at $\theta_{\gamma} > 5$ contain 3 times more DIS events, 5 times more π^0 events and 3 times less DVCS events. (e.g. if 20% of the background is π^0 production, after BDT cut there will be 40% of π^0 contamination.)

Beam Spin Asymmetry

We construct bins of equal number of events before background substraction

16/16

Figure: Binning scheme for BSA measurements in regions with 60K events.

Raw Beam Spin Asymmetry

Figure: raw BSA measurements for global training with proton (blue), without proton (red) and **binned training with proton (black)**.

Raw Beam Spin Asymmetry

$$A_{LU} \equiv rac{1}{P} rac{h^+ - h^-}{h^+ + h^-} \sim rac{p_0 \, \sin(\phi)}{1 + p_1 \, \cos(\phi)} \, e^{-h_0 - h_0 - h_0}$$

-0.366<t<-0.000 , 2.683<Q2<9.655 , 0.211<x_<0.658

$$\frac{\sin(\phi)}{\sigma_{UU}}\Im\left[F_1\mathcal{H}+\xi(F_1+F_2)\tilde{\mathcal{H}}-kF_2\mathcal{E}+\ldots\right]$$

	GP	BP	GNP
$\langle t \rangle (\text{GeV})^2$	-0.251	-0.247	-0.220
$\langle Q^2 \rangle \; (\text{GeV})^2$	3.753	3.759	3.717
$\langle x_B \rangle$	0.260	0.264	0.277

16/16

Global training with proton (blue): GP

- Binned training with proton (black): BP
- Global training without proton (red): GNP

□ Training on bins gives very similar results to the global training.

□ Training without proton information has an additional systematic shift.