Dr. Matthew Shepherd

Indiana University, Bloomington

Kevin Saldaña

Photoproduction

- Linearly polarized photon beam
- Freedom to select "naturality" of exchange particle

Indiana University, Bloomington

Polarized Photon Beam

- 50 μm diamond radiator, 4 polarization plane orientations
- Energy measurement
- Polarization and flux measurement

 - **Pair spectrometer (TS)**

Indiana University, Bloomington

GlueX Detector

Tracking:

- Central Drift Chamber (CDC)
- Forward Drift Chamber (FDC)
- Momentum resolution 1-3%

Calorimetry:

- Forward Calorimetry (FCAL)
- Barrel Calorimetry (BCAL)
- Energy resolution ~6%

Particle Identification

- Time of Flight (TOF)
- BCAL timing
- Tracking chambers dE/dx

Magnet

Exotic search

- COMPASS and JPAC partial- wave analysis (PWA) for pion-production

COMPASS Collaboration / Physics Letters B 740 (2015) 303-311

- Look at exclusive reaction $\gamma p \rightarrow KsK^{-}\pi^{+}p$
- Priority of $\eta^{(')}\pi$ in GlueX, strongest evidence for exotics
- Study production, t dependent cross section without PWA

3.0

 χ^2 Rank

2.5

1.5

2.0

8.0

1.0

1.5

0.5

2.0

3.0

2.5

M[pi⁺ p] GeV/c²

Using Fall 2018 data **CUTS:**

Ks Flight Length > 3 cm

Signal MC scaled using: $N^{data} = \left[\frac{L\sigma B}{N^{MC,gen}}\right] N^{MC,acc}$

Data Signal MC $a_2^- \Delta^{++} \rightarrow (KsK^-)(\pi^+ p)$

$$\frac{a}{M_{INV}^2 - M_{a_2}^2 + iM_{a_2}\Gamma_{a_2}} + \frac{be^{i\delta}}{M_{INV}^2 - M_{a_2'}^2 + iM_{a_2'}\Gamma_{a_2'}} \Big|^2$$

$$= \frac{N^{DATA}}{LB((a_2 \to K\bar{K})(Ks \to \pi^+\pi^-)) \epsilon} = 461 \pm 13_{si}$$

$$H_{a_2} = 1.315 \pm 0.002 \ GeV$$

$$H_{a_2} = 0.114 \pm 0.003 \ GeV$$

$$H_{a_2} = 1.660 \pm 0.010 \ GeV$$

$$G_{a_2'} = 0.322 \pm 0.021 \ GeV$$

DATA **Breit_Wigner** Phase Space x 2nd order poly

t-dependent cross section

Calculate cross section in bins of t

Indiana University, Bloomington

Angular Moments

- Angular distributions give indication of parent particles
- Weight bins of mass by angular distributions show contribution of S,P,D waves

$$H^{0}(LM) = \frac{1}{2\pi} \int_{O} I(\Omega, \Phi) \ d^{L}_{M0}(\theta) \ cosM\phi$$

$$H^{1}(LM) = \frac{1}{\pi P_{\gamma}} \int_{O} I(\Omega, \Phi) \ d^{L}_{M0}(\theta) \ \cos M\phi \ co$$

Indiana University, Bloomington

Angular Moments (Cont.)

$${}^{(-)}H^{(0)}(4,0) = \frac{2}{21} \left[6 \left| D_0^{(-)} \right|^2 - 4 \left(\left| D_1^{(-)} \right|^2 + \left| D_{-1}^{(-)} \right|^2 \right] \right] \right]$$

Polarization Angle = 45° $H^{0}(4,0)$

Gen-amp

Indiana University, Bloomington

 $\binom{-1}{2} \binom{2}{1} + \binom{-1}{2} \binom{-1}{2} + \binom{-1}{2} \binom{2}{-2} \binom{2}{2}$

HUGS 2023

$${}^{(-)}H^{(0)}(4,0) = \frac{2}{21} \left[6 |D_0^{(-)}|^2 - 4 \left(|D_1^{(-)}|^2 + |D_{-1}^{(-)}|^2 \right) \right] + \left[\frac{2}{21} + \frac{2}{21} \right]$$
Polarization Angle = 45°

HUGS 2023

Angular Moments (Cont.)

Indiana University, Bloomington

Polarization Angle = 45°

M[K-Ks] GeV/c²

Summary

- Study $a_2^{(\prime)}$ within GlueX, production and t-dependent cross sections
- Further analysis on background
- Investigate angular moments

Indiana University, Bloomington

$N^{DATA} = \mathscr{L} \cdot B \cdot \sigma \cdot \epsilon$ $B = (a_2 \to K\bar{K}) \cdot (K\bar{K} \to K_s K^-) \cdot (K_s \to \pi^+ \pi^-)$ $B = (0.049)^*(0.5)^*(.692)$ $\mathscr{L} = 142.379 \, (pb)^{-1}$ $\mathcal{S}^{Coherent Peak} = 39.2602 \, (pb)^{-1}$ $\sigma = 400 \text{ nb}$ $\epsilon = 0.0529$

Indiana University, Bloomington

 $N_{RGGEN}^{GEN} = 2.052e08$

 $\mathscr{L}_{BGGEN} = 2.0317(pb^{-1})$

 $mN_{BGGEN}^{Gen} = \mathscr{L}^{DATA} \sigma_{Hadronic}$

 $= 9.5 \times 10^3$

Ks sidebands

M[K[⁻] Δ⁺⁺] GeV 14 12 1.0 1.5 2.0 2.5

4.03000000000002<M[K_sK⁻ Δ⁺⁺]<4.04999999999999999

20

2.5

3.0

3.5

M[K⁻ ∆⁺⁺] GeV

M[K_s K⁻] GeV

2.0

4.11000000000003<M[K_sK⁻Δ⁺⁺]<4.129999999999999999

Indiana University, Bloomington

1.5

M[K[⁻] ∆⁺⁺] GeV

M[K[⁻] ∆⁺⁺] GeV

1.0

Image credit: Mike Pennington

