

HUGS2023
Yulia Furletova (JLAB)
9 June 2023

Outline

- Detector acceptance, location, size, global integration
- Central detector:
- Tracking detectors, PID, Calorimeter ..
- Far-forward/backward detectors
- Background

EIC YELLOW REPORT Volume III: Detector

Materials for slides come from various EIC community efforts: Yellow Report, EIC Project, ECCE/ATHENA proposals, ePIC collaboration, etc Many thanks to all collaborators!

Number of events

$$
N=\sigma \cdot L \cdot \epsilon \cdot a
$$

Where L is a luminosity
σ is a cross section
a is an acceptance,
ε is a detector efficiency

$$
\begin{aligned}
& \text { Statistical uncertainties: } \sim \frac{1}{\sqrt{N}} \\
& \left(d \sigma_{\text {measured }}^{\text {tot }}=\sqrt{\left.N_{o b s} \frac{\sigma_{\text {measured }}^{\text {tot }}}{N^{o b s}}\right)}\right.
\end{aligned}
$$

\checkmark As high luminosity as possible
\checkmark detector efficiency at $100 \%=>$ no dead-time for detectors
\checkmark full acceptance (100\%) $=>$ detect all particles

Acceptance and event kinematics:

fixed target vs collider ?

CEBAF/JLAB (e)
COMPASS (μ or hadron)
LHCb (LHC)
HERMES (HERA)
Collider

(pp) - ATLAS, CMS (LHC)
(e+e-) - KEK (Belle-II)
(e-p/A) - H1,ZEUS (HERA) , EIC

$$
Q^{2}=s \cdot y \cdot x
$$

Homework question:

$$
s=4 \cdot E_{e} \cdot E_{p}
$$

At EIC, electrons with energy of 18 GeV will collide with protons with energy of 275 GeV . Calculate the center-of-mass energy of this accelerator.
Consider an experiment, where protons are at rest (fixed target). What electron energy would be needed to obtain the same center-of-mass energy as at EIC collider?

Fixed target experiments

Collider: Total acceptance detector

$>$ In ideal case - we want to have 4π coverage for the detector.

Central Detector with
Solenoid Magnet

But, beam elements limit a forward acceptance

Detection of forward going particles are particularly challenging > not usual concern at colliders
\rightarrow Higher the Ion Beam energy, more difficult to achieve.
=> Integration with accelerator is very important
2) => eP collider=> forward and backward directions have different functions.

Why endcaps and forward areas are important at EIC?

$$
\begin{aligned}
Q_{\mathrm{EM}}^{2} & =2 E_{e} E_{e^{\prime}}\left(1+\cos \theta_{e^{\prime}}\right), \\
y_{\mathrm{EM}} & =1-\frac{E_{e^{\prime}}}{2 E_{e}}\left(1-\cos \theta_{e^{\prime}}\right), \\
x & =\frac{Q^{2}}{4 E_{e} E_{\mathrm{ion}}} \frac{1}{y}
\end{aligned}
$$

Pseudorapidity:
Transition area from DIS to Photoproduction ($Q^{\wedge} 2<5 \mathrm{GeV}$)
$\eta=-\ln (\tan (\theta / 2))$

Why endcaps and forward areas are important at EIC?

- All hadrons are boosted towards hadron-endcap due to asymmetric beam energies
- Proton/lon Remnant
- Diffractive/exclusive physics in the Far-forward area

ePIC Detection Design (Current) Central detector

Why do we need a magnetic field?

Magnetic field to measure momentum and charge Solenoid:
In a homogeneous B-field the motion of a charged particle is a helix.

```
pT[GeV]= 0.3\bulletB [T]\bullet R [m]
```


> Need high magnetic field to reconstruct bending radius: for high momentum particles, otherwise straight segment (no momentum measurements, no charge) - depends on resolution of tracker.
> Also we need higher magnetic field for particles going at the shallow angle (along a beampipe)
> BUT Too high magnetic field: low momentum particles could bend/fly inside a beampipe without detection

Total acceptance detector: Detector size

Detector needs a Solenoid to measure particle momenta =>

We need it only for our detector system! The accelerator could function without it! => Solenoid field needs to be compensated by accelerator
Optimize/change a magnetic field - depending on the beam energy configuration we use?

Vlimitation in size: for the central detector (in R and Z) due to the radius/length of solenoid magnet =>

- how it fits into the HALL?
- how to do assembly, installation, maintenance?

The Solenoid

The BaBar superconducting solenoid for the EIC detector (sPhenix) could be reused -provides the 1.4 T field

A design of a new solenoid with similar parameters are ongoing (1.7 T , unto 2 T)
The warm bore diameter of 2.84 m and coil length of 3.512 m

Central Induction	$1.5 \mathrm{~T}^{*}(1.4 \mathrm{~T}$ in ECCE flux return $)$
Conductor Peak Field	2.3 T
Winding structure	Two layers, graded current density
Uniformity in tracking region	$\pm 3 \%$
Winding Length	3512 mm at R.T.
Winding mean radius	1530 mm at R.T.
Operating Current	$4596 \mathrm{~A}\left(4650 \mathrm{~A}^{*}\right)$
Inductance	$2.57 \mathrm{H}\left(2.56 \mathrm{H}^{*}\right)$
Stored Energy	27 MJ
Total Turns	1067
Total Length of Conductor	$10,300 \mathrm{~m}$

[^0]

Central detector layout (General purpose detector)

Particles

Today more then 200 particles listed in Particle Data Group (PDG)
But only 27 have ct > $1 \mu \mathrm{~m}$
and only 13 have $c T>500 \mu \mathrm{~m}$

For all particles we want to measure:

- Particle momentum
- Origination (vertex)
- Energy
- Identification (Mass) : type of the particle

Why do we need precision measurements of

 particle momentum?For all particles we want to measure:

- Particle momentum or Particle trajectory or Track => Tracking detectors
- Origination (vertex)
- Energy
- Identification (Mass) : type of the particle

Tracks

Tracks in particle physics

> Particles have to interact with material of detector

Tracking detectors (position sensitive detectors)

$>$ Particles have to interact with material of detector
> Electronically recordable hits/tracks
\rightarrow Provide precise space point coordinates/trajectory of charged particles
$>$ Provide momentum measurements in magnetic (B) field
>Provide angle measurements
$>$ Provide measurements of primary and secondary vertices
> Provide a multitrack separation
> Provide a particle identification (if possible)
> Keep a minimum of material along the path of particles to minimize scattering and secondary interactions.

$$
-\left\langle\frac{d E}{d x}\right\rangle=K\left[\frac{Z}{A} \rho \rho \frac{z^{2}}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}-\frac{C(\beta \gamma, I)}{Z}\right]\right.
$$

- Almost does NOT depend on material ($Z / A \sim \frac{1}{2}$)
- Proportional to z^{2}
- Depends on $\beta \gamma=\mathrm{p} / E * E / m=\mathrm{p} / \mathrm{m}$
- The same curve for all $z=1$ particles when plotted as a function of $\beta \gamma$)
- Have a minimum at $\beta \gamma=3-4$
- Plateau at high $\beta \gamma$

Momentum resolution

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\sqrt{\left(\frac{\sigma_{p_{T}}}{p_{T}}\right)_{\mathrm{meas}}^{2}+\left(\frac{\sigma_{p_{T}}}{p_{T}}\right)_{\mathrm{MS}}^{2}}
$$

Position resolution ($\mathrm{N}>10$) :

$$
\frac{\sigma\left(p_{T}\right)}{p_{T} \text { meas }}=\frac{\sigma(x) \cdot p_{T}}{0.3 B L^{2}} \sqrt{\frac{720}{N+4}}
$$

Multiple scattering:
from PDG

$$
\frac{\sigma(p T) \mathrm{MS}}{p T} \approx \frac{1}{\sqrt{L X 0} B}
$$

At small momenta this limits resolution of momentum measurement

-Optimize material effects (multiple scattering) optimize amount of material along particle track (sensitive area (Si), support structure, cables..)
-Place first plane as near as possible to IP $-P_{T}$ is linearly better with B-field, but...
-Increase N (but only as $1 / \sqrt{ } \mathrm{N}$)
-Improve hit point resolution (σ meas)

Tracking detectors/Vertex

Challenge: How to measure a displaced vertex ?!
-Secondary vertices: D-mesons (lifetime) ca 100-300 $\mu \mathrm{m}$ (our hair 50-150 $\mu \mathrm{m}$)
=> Need to place high granularity and precision detector as close as possible to IP (to beam-pipe)
BUT a beam pipe needs to be large enough to allow beam (with beam halo) to path through (depends on bunch sizes)

EIC central beam-pipe -Inner section: 1.5 m Beryllium to minimize multiple scattering -2um Gold coating to absorb soft photons from synchrotron radiation

Tracking at EIC

Hybrid tracking detector design: Monolithic Active Pixel Sensor (MAPS, ITS3) based silicon vertex/ tracking subsystem, the muRWELL tracking subsystem and the AC-LGAD outer tracker, which also serves as the ToF detector.

Magnetic field to measure momentum and charge (bended curves)
Particles have to interact with material of detector:
\checkmark Charged particles: leave energy along the track (hits) (dE/dx)
\checkmark Photons/Gammas- depending on energy (*): no tracks (no hits or just a single hit)

Tracking detectors/Vertex

- Low material budget: 0.05\% X/X0 per layer
* High spatial resolution: $20 \mu \mathrm{~m}$ pitch MAPS (Alice ITS3)
- TowerJazz 65nm technology (ongoing R\&D Si Consortium)
* Configuration: Barrel + Disks for endcaps
- $|\eta|<3.5$ with full azimuth coverage

Tracking detectors/Vertex

For the larger/outer layers :

- MPGD technology
© spatial resolution well below 100 um for curved geometry
- Large-area detectors possible - cost efficient compared to silicon large surface detectors

Preliminary μ Rwell results from Fermilab test beam

Background/radiation

$>$ The HERA and KEK experience show that having backgrounds under control is crucial for the EIC detector performance
$>$ There are main background/radiation sources:

* primary collisions
* beam-gas induced
* synchrotron radiation
$>$ The design of absorbers and masks must be modeled thoroughly

Primary collisions/ionizing radiation

-> backward EmCal: ~250 rad/year (at a "nominal" luminosity $\sim 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Particle Identification

Limited number of "stable" final state particles: only 13 have ct >500 $\mu \mathrm{m}$

- Electrons / positrons
- Gammas
- Jet/Jets
- Individual hadrons ($\pi \pm, K \pm, p$)
- Muons (absorber and muon chamber)
- Neutrinos (missing PT in EM+HCAL)
- Neutral hadrons ($n, \mathrm{~K}_{\mathrm{L}}$) (HCAL)
- Electrons: EMCAL cluster + track pointing to cluster
- Gammas (γ): EMCAL cluster, no track pointing to cluster
- Neutrinos (v): missing P_{T}
- Muons: track, min. energy in EMCAL, min. energy in HCAL, track in muon det.
- Charged pions, kaons and protons from each other -> Cherenkov detectors

Short lived particles: hadron identification

Example: charm -> (fragmentation)-> D-mesons ->(decay) -> hadrons,leptons...
Invariant mass reconstruction

$$
D^{-*} \rightarrow \pi_{s}^{-} D_{L}^{0} \pi^{-K^{+}}
$$

A

- high combinatorial background without PID

Individual charged hadrons $(\pi, \mathrm{K}, \mathrm{p})$

$D^{0} \rightarrow \pi K$ mass spectrum, on the top of DIS background

$\mathrm{m}_{\mathrm{K} \pi}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$m_{k \pi}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

In order to select/identify specific reaction (for example, D0 production) one need to apply certain criteria/cuts to extract such events from the minbias events (DIS background).

Particle identification: charged hadrons $(\pi, \mathrm{K}, \mathrm{p})$

Cherenkov detectors, complemented by other technologies at lower momenta (TOF)
Need 4π coverage

Particle Identification detectors

Backward PID

A Proximity-Focusing RICH for the ePIC Experiment

- Aerogel radiator
- threshold-based electron ID
- Requires expansion volume

π / K up to 10 GeV

(a) Reconstructed Cherenkov angle for parti cles as a function of particle momentum

(b) Reconstructed squared Cherenkov angle for particles as a function of inverse squared momentum

Barrel PID

A High-performance DIRC
-radially compact ($\sim 5 \mathrm{~cm}$)
-better optics and <100ps timing

$$
\pi / K \text { up to } 6 \mathrm{GeV}
$$

Forward PID

Dual-Radiator RICH (dRICH)
 50 GeV

Aerogel and Gas radiators

Particle Identification detectors

PID technologies are based on the outcome of the EIC generic R\&D (eRD14)

- Backward: Proximity-Focusing RICH(pfRICH)
- Barrel: Radially compact with flexible design high-performance DIRC (hpDIRC)
- Forward: Double-radiator RICH (dRICH)
- TOF $(*)$ AC-LGAD based time-offlight (TOF) system for hadronic PID in momentum range below the
ePIC Detector Design (Current)
 thresholds of the Cherenkov detectors

Timing detectors: AC-LGAD

DC-contact

- For TOF or Far-Forward/Backward area
- Detectors can provide <20ps / layer
- AC-coupled variety gives 100% fill factor and potentially a high spatial resolution (dozens of microns) with $>1 \mathrm{~mm}$ large pixels
$\Delta \mathrm{t}_{\mathrm{TOF}}=\frac{c L_{T O F}}{2 p^{2}}\left(\mathrm{~m}_{1}{ }^{2}-\mathrm{m}_{2}{ }^{2}\right) \quad \frac{d m}{m}=\frac{d p}{p}+\gamma^{2}\left(\frac{d t}{t}+\frac{d L}{L}\right)$.

$>$ In barrel - limited space $L_{\text {TOF }}<1 \mathrm{~m}$
$>$ No space for "Start detector" - tO
$>$ Need to know vertex position more precisely to measure L_TOF precise (total particle length/curvature)
> high timing resolution of TOF detector (10-20 ps)

Particle identification: charged hadrons ($\pi, \mathrm{K}, \mathrm{p}$)

Readout: PMT vs SiPM

Compactness
Single photon sensitive
Huge dark noise rate (temperature dependent)
$>100 \mathrm{kHz} / \mathrm{mm} 2$ @ 25C

Additional e- ID : GEM based TRD (part of generic R\&D) for

future update or 2nd Detector

- To improve e-identification for leptonic/semi-leptonic decays.
- In addition to Calorimeters and Cherenkov detectors in the hadronendcap considering TRD.
- GEM -TRD/Tracker :
- e/ π rejection factor ~ 10 for momenta between $2-100 \mathrm{GeV} / \mathrm{c}$ from a single $\sim 15 \mathrm{~cm}$ thick module.

- Very precise Tracking segment behind dRICH.
- Could be used as the EIC detector upgrade

Why do we need a calorimeter?

\checkmark Use momentum measurements for charged particles:
$E^{2}=\left(p^{2}+m^{2}\right)$
$>$ Need to identify a particle (or mass): not always possible.
$>$ Need to measure momentum precise: not always possible.

* Momentum measurements are getting worse with increase of particle momenta ($\left.\frac{\Delta p}{p} \sim \mathrm{p}\right)$
* BUT, Calorimeter measurements are getting better with increase of the energy $\left(\frac{\Delta E}{E} \sim \frac{1}{\sqrt{ } E}\right)$

\checkmark Need to measure neutral particles! Calorimeter is the ONLY detector for them.

Calorimetry

\checkmark In nuclear and particle physics calorimeter refers to energy measurements of particles.

We need 1 kCal to change a temperature on $1{ }^{\circ} \mathrm{C}$ for 1 liter of water
$1 \mathrm{kCal} \sim 1000 \cdot 2.61 \cdot 10^{19} \mathrm{eV}$
~ $2.61 \cdot 10^{10} \mathrm{TeV}$
\checkmark In calorimeters the process of energy measurements is destructive:
we must completely stop the particle in our detectors to measure its full energy:
Unlike, for example, tracking chambers (silicon, gaseous, etc), the particles are no longer available for detection once they path through a calorimeter.

With just few exceptions: muons and neutrinos penetrate through with a minimal interactions
\Rightarrow Calorimeter is the outermost detector
\checkmark Calorimeter measure charged + neutral particles

Types of calorimeter

- Sampling calorimeter:

Layers of absorber alternate with active(sensitive) detector volume
(sandwich, shashlik, accordion structures)

Absorber: Pb , etc
Sensitive (solid or liquid):
Si, scintillator, LiAr

Monolithic material, serves as both absorber and detector material

Liquid: Xe, Kr
Dense crystals: glass, crystals PbWO_{4}

Calorimetry at EIC

Close to 4π coverage calorimeters need to perform

- Scattered electron kinematics measurement
- Photon detection and energy measurement
* e/h separation (via E/p \& cluster topology)
- $\pi 0 / \mathrm{Y}$ separation

EMCAL technologies are based on the outcome of the EIC generic R\&D (eRD1)

Electromagnetic calorimeter

Backward EMCAL

 Barel EMCAL

Alternative: SciGlass

Forward EMCAL

High granularity W/SciFi EMCal Longitudinally separated HCAL with high- η insert

Barrel ECAL
Forward ECAL

η	
$\sigma_{\mathrm{E}} / \mathrm{E}$	$[1.3$.. 4]
$7.1 \% / \mathrm{VE}+0.3 \%$	

*Based on prototype beam tests and earlier experiments

Crystals

Tungsten glass (CMS or PANDA)
-Excellent energy resolution:

$$
(1-3) \% / \int E(G e V)+1-1.5 \%
$$

-Tower structure, fine transverse granularity
-Compactness, easy to assemble
-Time resolution: <2 ns
-Cluster threshold: 10 MeV

- are available from two vendors
-Each crystal each weigh 1.5 kg
-Each crystal needs ca two days to grow
- For CMS it took 10 years to grow all crystals !!!

PWO: vendor characterization

ePIC electromagnetic calorimeters

EMCal energy resolution plot from Fredierike Bock 3/30/2023

Both calorimeters meet the YR energy resolution requirement

SciGlass easily meets the YR requirement

Hadronic calorimeter

Barrel HCAL (sPHENIX re-use)

Backwards HCal Steel/Sc Sandwich tail catcher

High granularity
W/SciFi EMCal Longitudinally separateo HCAL with high- η insert

Sampling calorimeter: EMCAL

- Well established technology
- HERA-B, ALICE, PHENIX, PANDA, ...
- Medium energy resolution $\sim 7 . .13 \% / \sqrt{ } \mathrm{E}$
- Compact ($\mathrm{X}_{0} \sim 7 \mathrm{~mm}$ or less), cost efficient
- Pb/Sc shashlyk

Sampling calorimeter: HCAL Barrel HCAL (OHCAL+IHCAL)

Forward HCAL (LFHCAL)
Integrated ECAL+HCAL longitudinally segmented sampling calorimeter based on Fe/SC, W/Sc and last segment W (tailcatcher)

*Based on prototype beam tests and earlier experiments

Calorimeter for particle identification

Electrons: track pointing to cluster in EMCAL Gammas: no track but cluster in EMCAL Neutral hadrons: no tracks, energy in HCAL Neutrino: missing energy (E_{T}, p_{T})
Muon: track, minimum energy in CAL Charged hadrons: track+ energy in HCAL (ratio EMCAL/HCAL)

Problems (misidentification):
e/hadron separation: hadrons could develop shower in EMCAL $\pi 0 \rightarrow \gamma \gamma$: cluster in EMCAL
Not possible to separate charged hadrons (π, K, p)

Material budget
 \square Low material budget

\square Minimize bremsstrahlung and conversions for primary particles
\square Improve tracking performance at large $|\eta|$ by minimizing multiple Coulomb scattering
\square Minimize the dead material in front of the high-resolution EM calorimeters

Physics motivation: exclusive reactions

Example from HERA/ZEUS

M_{X} - invariant mass of all particles seen in the central detector t - momentum transfer to the diffractively scattered proton t - conjugate variable to the impact parameter

EIC interaction region layout (IP6)

- $\sim 9.5 \mathrm{~m}$ around the IP is reserved for the central detector
- Crossing angle provides beam separation and space for detector placements
- Apertures of FFQs and dipoles are designed to allow forward going particles to go through
- Far forward and far backward detector components are distributed along the beam line within $\pm 40 \mathrm{~m}$ Design should be able to operate with different beam energy and high luminosity
- We are keeping a full detector integration in sync with the accelerator design from the early stages on

Far-forward detectors (hadron-going)

Geant4 implementation of IP6 Far-forward area

BO-detectors

\Rightarrow Dipole field 1.3T: for momentum reconstruction. Design still ongoing (most likely B0 will be shorter $1.8 \mathrm{~m}->\sim 1.5 \mathrm{~m}$)
\rightarrow B0 placement - after HCAL

- Limited space

Access to B0-detectors only from one side (after opening HCAL)

- Vacuum pumps
\rightarrow Beam-pipes: crossing angle
> B0 placement: high background area => high granularity detectors needed in this area

BO-detectors

$(5.5<\theta<20.0 \mathrm{mrad})(4.6<\eta<5.9)$-- large $|\mathrm{t}|$ value

- Create zero field line at electron beam axis.
- Warm space for detector package insert located inside a vacuum vessel to isolate from insulating vacuum.

B0-detectors

(5.5 $<\theta<20.0 \mathrm{mrad}$)

\checkmark Tracker for charged particles: High granularity detectors needed in this area with layers of fast-timing detectors due required p_{T}, beam effects, high background.
\checkmark B0-dipole length is ca 1.5 m
\checkmark Combination of high spatial resolution and good timing spaced evenly by 30 cm inside ($\sim 20 \mathrm{~cm}$ in diameter)

For photon detection: A simple photon tagger or EMCAL (for energy measurements) will be needed. As an example: for $\gamma+\gamma$ from π^{0} separation to clearly isolate u-channel DVCS
$\Rightarrow \mathrm{PbWO}_{4}$ (11.2 r.I.) behind the tracking layers: each 10 cm long with a surface area of $2 \times 2 \mathrm{~cm}^{2}$ (ECCE)
\Rightarrow or 2 radiations lengths of Pb converter, followed by a layer of ACLGADs (ATHENA)
=> Work in progress

BO-detectors integration

Roman-Pots

$$
0.0^{*}(10 \sigma c u t)<\theta<5.0 \mathrm{mrad} \quad \sigma(z)=\sqrt{\varepsilon \cdot \beta(z))}
$$

\checkmark Movable (as close as 10σ away from the beam (depends on beam energy and beam configuration: high divergence or high acceptance).
\checkmark Move out during an injection.
\checkmark RPs needs to be integrated into the vacuum system
\checkmark Insertion from top and bottom - need to minimize space in front of ZDC.
\checkmark Preliminary concept of a mechanical setup.
\checkmark Very close contact with accelerator to avoid negative impacts on the machine operation

Roman-pots resolution

Alex Jentsch

Angular divergence

- The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$$
\Delta p_{t, \text { total }}=\sqrt{\underbrace{\left(\Delta p_{t, A D}\right)^{2}}_{\text {Angular divergence }}+\underbrace{\left.\Delta p_{t, C C}\right)^{2}}_{\text {Primary vertex smearing }}+\underbrace{\left(\Delta p_{t, p x l}\right)^{2}}_{\text {Smearing from }}}
$$

These studies based on the "ultimate" machine performance with strong hadron cooling.

Primary vertex smearing from crab cavity rotation

- With timing of $\sim 70 \mathrm{ps}$, effective bunch length is $2 \mathrm{~cm}->.25 \mathrm{~mm}$ vertex smearing ($\sim 7 \mathrm{MeV} / \mathrm{c}$)

Finite pixel size on sensor

- 500 um seems like the best compromise between potential cost and smearing

Forward proton acceptance

systems together here

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)->$ lower lumi., smaller beam at
RP RP

Off-momentum detectors

$$
(0.0<\theta<5.0 \mathrm{mrad},(\eta>6))
$$

> Protons that come from nuclear breakup have a different magnetic rigidity than their respective nuclear beam ($\mathrm{x}_{\mathrm{L}}<1$)
$>$ This means the protons experience more bending in the dipoles.
\rightarrow As a result, small angle ($\theta<5 \mathrm{mrad}$) protons from these events will not make it to the Roman Pots, and will instead exit the beam pipe after the last dipole.
$>$ Detecting these requires "off-momentum detectors"
$>$ Movable, beam pipe integration.

Off-momentum detectors

($0.0<\theta<5.0 \mathrm{mrad},(\eta>6)$)

ep -> (K) -> $e^{\prime}+\Lambda+X$
$\rightarrow \mathrm{p}+\pi-(\mathrm{Br} \sim 64 \%)$
$>$ Detecting Lambda's decays in the target fragmentation area is very hard, due to a very large decay length (meters).
$>$ Would require in addition detection of negative charged particles (pi-) at the OFF-momentum detector location

Roman Pots/ OMDs integration

Zero Degree Calorimeter (ZDC)

For detection of neutrons and photons
Acceptance:
$0<\theta<5.5 \mathrm{mrad}$
(Limited by bore of magnet where the neutron cone has to exit)
High resolution ZDC, based on ALICE FoCAL
\square

ZDC integration

Energy Resolution

Far-backward (electron-going) region

FIG. 16: Coverage in Q^{2} for tagger detectors and ECAL.
$>$ This area is designed to provide coverage for the low-Q ${ }^{2}$ events (photoproduction, $Q^{2}<\sim 1 \mathrm{GeV}^{2}$). Need to measure the scattered electron position/angle and energy.
> And luminosity detector (ep -> e'p γ bremsstrahlung photons)
$>$ Beam-pipe design ongoing

Luminosity monitor

B2BeR

e' Similar to ZEUS/HERA concept

Goals for Luminosity Measurement:

 Integrated luminosity with precision $\delta \mathrm{L} / \mathrm{L}<1 \%$$\Rightarrow$ Luminosity measurements via BetheHeitler process
$>$ Photons from IP collinear to e-beam
$>$ First dipole bends electrons
$>$ Photon conversion to e-/e+ pair
$>$ Pair-spectrometer
$>$ Synchrotron photons collimation scheme needs to be further refined

UMINOSITY MEASUREMENT VIA BETHE-HEITLER PROCESS:

DAQ: Streaming Readout Architecture

Possible at EIC as data rates manageable
(500 kHz, O(100) Gbps)

AI/ML for EIC

- For Calorimeter : clustering, energy reconstruction
- For Tracking: Clustering/ pattern recognition / track fitting
- For particle identification (from a single detector or from multiple)
- For detector optimization
- For online data processing (FPGA)
- For physic event selection
- For background suppression
- ... and many others

Geant 4 simulation

Examples of events with e and π^{-} showers and μ^{-}passing through.

ML on FPGA

Low latency

Inference on an FPGA

A test bench for GEMTRD tracking and PID on FPGA

Jefferson Lab
The e/pion separation in the GEM-TRD detector is based on counting the ionization along the particle track.

- For electrons, the ionization is higher due to the absorption of transition radiation photons
So, particle identification with TRD consists of several steps:
> The first step is to cluster the incoming signals and create "hits"
> The next is "pattern recognition" sorting hits by track.
> Finding a track
> Ionization measurement along a track
> As a bonus, TRD will provide a track segment for the global tracking system.

6/9/23

Several version of IPs were synthesized and tested on FPGAs.
The logic test was performed with the MicroBlaze processor.
We are currently working on a fast I/O interface to get data directly from the detector.

AI4EIC

AI4EIC 2023 Annual Workshop

November 28, 2023 to December 1, 2023 Catholic University of America, Washington D.C. J/Eastern timezone

Building upon the productive discussions and synergies formed during our previous events, the focus of this workshop will be the active and potential areas of $\mathrm{AI} / \mathrm{ML}$ applications within the EIC, including ongoing activities in the ePIC experiment and beyond.

The workshop will feature AI/ML tutorial sessions led by experts from academia, national labs, and the industry.

We are also excited to announce the second international Al4EIC Hackathon, which will be held on December 1st.

Summary

- The EIC detector (ePIC) - a physics-driven design
- It is a general purpose detector.
- It is also a balance between the reuse of equipment, the mature state of art technology and detector technologies that are at the near-end of an extensive R\&D effort
- AI was used to optimize detector choices, locations, and materials.
- We are continue to improve the design on the way to CD2

Following movies are made by

 Miguel Arratia and Sean Preins
Backup

Solutions:

$$
\begin{aligned}
& \sqrt{s}=\sqrt{\left(4 E_{e} E_{p}\right)}=\sqrt{4 \cdot 18 \cdot 275} \sim 141 \mathrm{GeV} \sim \sqrt{2 E_{A} m_{B}} \\
& s=\left(p_{A}+p_{B}\right)^{2}=m_{A}^{2}+m_{B}^{2}+2 \cdot E_{A} \cdot m_{B} \sim 2 \cdot E_{A} \cdot m_{B} \\
& \sqrt{s}=141 \mathrm{GeV} \sim \sqrt{2 E_{A} m_{B}} \\
& E_{A}=\frac{141^{2}}{2 \cdot m_{B}} \sim 10 \mathrm{TeV}
\end{aligned}
$$

Electron polarization measurements

Compton polarimeter:

- Used to determine a polarization of electron beam
- Incoming photons scatters off electron

Compton Scattering

Photon detector (calorimeter) a matrix of four crystals of Lead Tungstate (P bW O 4) scintillating crystals with dimensions of $3 \times 3 \times$ 20 cm to detect the backscattered photons.

Electron detector (Diamond micro-strip detector)
The detectors are made from $21 \mathrm{~mm} \times 21 \mathrm{~mm} \times 0.5$ mm plates of Chemical Vapor Deposition (CVD) diamond. Each diamond plate has 96 horizontal metallized electrode strips with a pitch of $200 \mu \mathrm{~m}$

[^1]
Hadron Polarization (RHIC, EIC)

Existing p Polarization in RHIC achieved with "Siberian snakes"

- Near term improvements will increase proton polarization in RHIC from 60\% to 80\%

Polarimetry exploits left-right asymmetry in elastic scattering due to spin orbit interaction

30 cm

$$
P_{B}=\frac{\varepsilon_{L R}}{A_{N}}, \quad \varepsilon_{L R}=\frac{N_{L}-N_{R}}{N_{L}+N_{R}}
$$

- Proton-Carbon Polarimeter $(p C)$: very fast and high precision, but needs to be normalized

Hadron Polarization (RHIC, EIC)

- Polarized hydrogen Jet Polarimeter (HJet): absolute polarization, but slow.

Hadron Polarization

Elke Aschenauer

Hadron polarimetry at EIC

At RHIC:

- Polarized hydrogen Jet Polarimeter (HJet): absolute polarization, but slow.
- Proton-Carbon Polarimeter (pC): very fast and high precision, but needs to be normalized

BUTEIC is not RHIC!

- Higher bunch frequency and current.
- Background?

New detector technology (fast ~ 10ps Si?)
Reduce TOF?
Polarized D and He-3

Why do we need a magnetic field?

-bending radius depends on a particle momentum -charge (right, left)

```
p[GeV]= 0.3\bulletB [T]\bulletR [m]
```


Electron in a magnetic field at

Energy loss

Most tracking detectors are ionization detectors
same curve plotted vs. momentum for different particles => could be used for PID

$$
-\left\langle\frac{d E}{d x}\right\rangle=K\left|\frac{Z}{A}\right| \rho \frac{z^{2}}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}-\frac{C(\beta \gamma, I)}{Z}\right]
$$

- Examples of typical energy loss at minimum ionizing:
$\checkmark 1$ meter air: 0.22 MeV
$\checkmark 300 \mu \mathrm{~m} \mathrm{Si} \quad 0.12 \mathrm{MeV}$
$\checkmark 1 \mathrm{~mm}$ iron: $\quad 1.1 \mathrm{MeV}$
- Energy loss is a stochastic process (app described by Landay distribution) with infinitely" long tail.

Readout: SiPM

reverse bias voltage

[^0]: * Design Value

 Table 2.3: Design parameters of the BaBar superconducting solenoid.

[^1]: Dave Gaskell
 Josh Hoskins

