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A continuum approach to quantum chromodynamics (QCD), based upon Schwinger-Dyson (SD)
and Bethe-Salpeter (BS) equations, is employed to provide a tightly constrained prediction for the
γ�γ� → fπ0; η; η0; ηc; ηbg transition form factors (TFFs) and their corresponding pole contribution to the
hadronic light-by-light (HLbL) piece of the anomalous magnetic moment of the muon (aμ). This work
relies on a practical and well-tested quark-photon vertex Ansatz approach to evaluate the TFFs for arbitrary
spacelike photon virtualities, in the impulse approximation. The numerical results are parametrized

meticulously, ensuring a reliable evaluation of the HLbL contributions to aμ. We obtain aπ
0−pole

μ ¼
ð6.14� 0.21Þ × 10−10, aη−poleμ ¼ ð1.47� 0.19Þ × 10−10, aη

0−pole
μ ¼ ð1.36� 0.08Þ × 10−10, yielding a total

value of aπ
0þηþη0−pole

μ ¼ ð8.97� 0.48Þ × 10−10, compatible with contemporary determinations. Notably,

we find that aηcþηb−pole
μ ≈ aηc−poleμ ¼ ð0.09� 0.01Þ × 10−10, which might not be negligible once the percent

precision in the computation of the light pseudoscalars is reached.

DOI: 10.1103/PhysRevD.101.074021

I. INTRODUCTION

More than half a century after the advent of the Standard
Model (SM) of particle physics, it has successfully with-
stood a continuous barrage of innumerable experimental
tests. Many of us are keenly interested in high precision
measurements of quantities which can be theoretically
best calculated in order to zoom into the very limits
of this model, hunting for the possible discrepancies.
Measurement and calculation of the muon anomalous
magnetic moment, aμ ¼ ðgμ − 2Þ=2, provide precisely
such battleground [1–3]. The most recently reported
value by the Brookhaven National Laboratory (BNL),
116592091ð63Þ × 10−11 [4] shows a persistent 3.5 standard
deviations away from the SM prediction 116591823ð43Þ ×
10−11 [5]. Well deserved attention is currently being paid to

this anomaly1 due to the ongoing rigorous experimental
endeavours to pin it down with increasing precision. The
dedicated FNAL experiment will reach a fourfold improve-
ment of the current statistical error within about two years
from now [10]. Later on, J-PARC also plans to achieve a
comparable accuracy [11]. If this deviation does not wither
away, it would be highly desirable to reduce the SM
calculational uncertainty as much as possible to be able
to associate the discrepancy with possible new physics.
What stand in the way are the hadronic contributions which
are hard to tame and severely restrain our efforts to make
predictions with the desired exactitude.
The SM prediction includes quantum electrodynamics

(QED) corrections up to five loops [12–14], two-loop
(and leading-log three-loop) electroweak ones [15,16]
and hadronic contributions, the latter saturating the error
of the SM precision quoted above. These are divided into
hadronic vacuum polarization and hadronic light-by-light
(HLbL) contributions. While the former could be related to
data already in 1961 [17], a similar data-driven extraction is
not yet possible for the HLbL piece, although a dedicated
effort [18–26] has made remarkable advances towards
reaching this goal in the near future.
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1There have been recent hints for an anomaly with opposite
sign in ae at the 2.5σ level [6–9].
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The most recent evaluations of the hadronic vacuum
polarization contribution to aμ [27–31] have reduced its
error, reaching the same level of uncertainty as the HLbL
contribution. The latter must be diminished to fully benefit
from the very precise forthcoming measurements at FNAL
and J-PARC.2 The contributions of the lightest pseudosca-
lar mesons saturate aHLbLμ ,3 among which the π0-pole piece
dominates [37,39–57].
In this paper, we compute the HLbL contributions

coming from the light neutral pseudoscalar transition to
two photons (and the first ever estimation for ηc and ηb) to
the anomalous magnetic moment of the muon. We follow
a novel Schwinger-Dyson and Bethe-Salpeter equations
(SDEs, BSEs) approach to compute γγ� → M [58–60]
transition form factor for arbitrarily large space-like
momentum for the first time, in a unique framework with
a direct connection to quantum chromodynamics (QCD).
Such an approach is known to unify those form factors
with their corresponding valence quark distribution
amplitudes [61–63], charged pion and kaon form factors
[64–66], their parton distribution functions [67–69] and a
wide range of other hadronic properties (masses, decay
constants, etc.) [70–72]. We extend the SDE-BSE treatment
of Refs. [58–60] to account for arbitrary spacelike virtual-
ities of both photons.
Different plausible parametrizations of the numerical

data are discussed. In particular, the flaws and strengths of
vector-meson and lowest-meson dominance (VMD, LMD)
parametrizations [42] as well as Canterbury approximants
(CAs) [73] are analyzed. In the context of aHLbLμ , the latter
were presented in Ref. [55] and also in a recent, but
different, SDE-BSE approach [74]. As explained therein
and below, we find the CAs parametrization more adequate.
This article is organized as follows. In Sec. II, we

introduce the basics of our extension of Refs. [58–60] to
the doubly-off shell (DoS) case of the TFFs. The proposed
parametrizations of the numerical data are presented in
Sec. III, together with the implications of the low and high
energy behavior of the TFFs and the corresponding con-
straints. This framework is then applied to π0, η and η0
cases. This section ends with the corresponding description
of the heavy ηc and ηb mesons. In Sec. IV we discuss our
results for aHLbLμ . Based on this analysis, we present our
conclusions in Sec. V.

II. SDE-BSE APPROACH

The transition γ�γ� → M is described by a single form
factor. In the impulse approximation [58],

T μνðQ1; Q2Þ ¼ TμνðQ1; Q2Þ þ TνμðQ2; Q1Þ; ð1Þ

TμνðQ1; Q2Þ ¼
e2

4π2
ϵμναβQ1αQ2βGðQ2

1; Q1 ·Q2; Q2
2Þ

¼ e2MtrCD

Z
q
iχfμðq; q1ÞΓMðq1; q2Þ

× Sfðq2ÞiΓf
νðq2; qÞ; ð2Þ

where Q1; Q2 are the momenta of the two photons and
ðQ1 þQ2Þ2 ¼ P2 ¼ −m2

M (mM is the mass of the pseu-
doscalar). The kinematic arrangement is q1 ¼ qþQ1,
q2 ¼ q −Q2; with q being the integration variable.4 In
addition, eM ¼ ecM is a charge factor associated with the
valence quarks of the given meson (e is the charge of the
positron).5 The other symbols carry their usual meanings:

(i) SfðpÞ ¼ −iγ · pσvðp2Þ þ σsðp2Þ is the propagator
of the f-flavored quark. It is determined from its
SDE (namely, the gap equation):

S−1f ðpÞ ¼ Z2ð−iγ · pþmfÞ þ ΣfðpÞ;

ΣfðpÞ ¼ −
Z
q
½Kðq; pÞ�tursSsrðqÞ; ð3Þ

where Kðq; pÞ is the kernel of the gap equation and
fr; s; t; ug are color indices (not displayed when
obvious). Quark propagator, and every other Green
function involved in its SDE, are renormalized at the
resolution scale of ζ ¼ 2 GeV ≔ ζ2.

(ii) ΓMðp;PÞ is the Bethe-Salpeter amplitude of the
pseudoscalar meson M, obtained from its BSE:

ΓMðp;PÞ ¼
Z
q
½χMðq;PÞ�srMtu

rsðq; p;PÞ; ð4Þ

where P is the total momentum of the bound state
and χMðq;PÞ¼SðqþηPÞΓMðq;PÞSðq−ð1−ηÞPÞ,
η ∈ ½0; 1�. No physical observable depends on η,
the definition of the relative momentum.

Here Mðq; p;PÞ is the renormalized, fully am-
putated, two particle irreducible, quark-antiquark
scattering kernel. It is related to K via the axial-
vector Ward-Takahashi identity [75,76].

(iii) Finally, we have the amputated, Γμðqf; qiÞ, and
unamputated, χμðqf;qiÞ, quark-photon vertices
(QPV). Those obey their own SDEs [74,77].

In conjunction with Eq. (2), we employ the so-called
rainbow-ladder truncation (RL), which is known to accu-
rately describe the pseudoscalar mesons [58–60,64,69].
This entails

2Subleading hadronic corrections are known at the required
precision already [32,33].

3This is, however, not understood from first principles [34,35].
See Refs. [36–38] for recent approaches to compute scalar and
axial-vector meson contributions, respectively.

4For simplicity in the notation, we have defined
R
q ≡

R d4q
ð2πÞ4

5As explained in Ref. [60], Eq. (2) is modified to account for
the flavor decomposition of the η − η0 systems.
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Mrs
tuðq; p;PÞ ¼ Krs

tuðq; pÞ

≡ −
4

3
Gðk2ÞD0

μνðkÞ½γμ�ts½γν�ru; ð5Þ

where k ¼ p − q, D0
μνðkÞ is the tree-level gluon propagator

in the Landau gauge and Gðk2Þ is an effective dressing
function. We employ the well-known Qin-Chang interac-
tion [78], compatible with our modern understanding of the
gluon propagator [79–82]: its dressing function saturates in
the infrared and monotonically decreases as the momentum
increases and recovers the perturbative QCD running
coupling in the ultraviolet. With the interaction strength
(ωD ¼ m3

G) fixed, all physical observables are practically
insensitive to variations of ω ∈ ð0.4; 0.6Þ GeV [66,78].
Moreover, sensible variations of mG do not alter the output
observables significantly either, a fact that is illustrated
through the computation of the pion mass and decay
constant with two parameter sets (all these details are
taken into account in our final result). Here on, we shall

employ isospin symmetry mu ¼ md ≔ ml. Typically, mG
and the current quark masses are fixed such that ground-
state masses and decay constants are properly reproduced
[74,78]. Thus, for our first set of parameters (RL-I), we
employ fmπ; mK; fπ; fKg as benchmarks; for the second
set (RL-II), we use fmπ; mηc ; mηb ; fπg instead. Precise
input parameters, computed masses and decay constants
are given in Table I.

A. Quark-photon vertex

In principle, the QPV can be obtained from its
inhomogeneous BS equation. This process automatically
incorporates vector meson poles [77,84] in the vertex and
guarantees the preservation of the Abelian anomaly
[85–87]. However, it also limits the domain in which a
direct evaluation of the TFFs is possible [74,77,88,89].
Thus we follow an alternative route. We introduce a
reliable QPVAnsatz based upon gauge covariance prop-
erties and multiplication renormalizability of the massless
fermion propagator. In conjunction with this approach,
we incorporate the non-Abelian anomaly at the level of
the BSE. This approach sets apart our work (and our
previous ones [58–60]) from the recent SDE approach
of [74,77].
A kindred version of the vertex Ansatz we employ was

first introduced in [64], for the calculation of the pion
elastic form factor (EFF) and subsequently adapted in [58]
for the TFFs. The QPV is expressed completely via the
functions which characterize the dressed quark propagator
(q ¼ kf − ki, s̄ ¼ 1 − s):

χμðkf; kiÞ ¼ γμΔk2σV þ ½sγ · kfγμγ · ki þ s̄γ · kiγμγ · kf�ΔσV

þ ½sðγ · kfγμ þ γμγ · kiÞ
þ s̄ðγ · kiγμ þ γμγ · kfÞ�iΔσS ; ð6Þ

where ΔF ¼ ½Fðk2fÞ − Fðk2i Þ�=ðk2f − k2i Þ, s̄ ¼ 1 − s. Up to
transverse pieces associated with s, χμðkf; kiÞ and
SðkfÞΓμðkf; kiÞSðkiÞ are equivalent. Longitudinal pieces
alone do not recover the Abelian anomaly, since it turns out
impossible to simultaneously conserve the vector and axial-
vector currents associated with Eq. (2). Thus a momentum
redistribution factor is introduced:

s ¼ sf exp
h
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1=4þm2

M

q
−mM

�.
Mf

E

i
; ð7Þ

whereMf
E ¼ fpjp2 ¼ M2

fðp2Þ; p2 > 0g andMfðp2Þ is the
quark’s mass function. As s is exponentially suppressed,
it does not affect the large Q2 behavior of the TFFs. To
account for Q2

2 ≠ 0, the simplest symmetrization corre-
sponds to the replacement Q2

1 → Q2
1 þQ2

2, which clearly

TABLE I. RL parameters (left and central panels) are fixed to
produce the ground-state masses and decay constants. We restrain
ourselves to ω ¼ 0.5 GeV, the midpoint of the domain of
insensitivity [78]. The η − η0 values follow from RL-I parameters
plus the anomaly kernel [Eq. (10)] inputs given in the right panel.
Experimental PDG values are taken from [5], (*) lattice QCD
results from [83] and (†) phenomenological reference numbers
from [60]; here mπ and mK correspond to the average of the
neutral and charged mesons. The mass units are in GeV.

RL-I Herein Experiment

mG 0.80 mπ 0.135 0.137
ml 0.0051 mK 0.496 0.496
ms 0.125 mss 0.698 0.689�

fπ 0.093 0.093
fK 0.112 0.111
fss 0.134 0.128�

RL-II Herein Experiment

mG 0.87 mπ 0.138 0.137
ml 0.0042 mηc 2.981 2.984
mc 1.21 mηb 9.392 9.399
mb 4.19 fπ 0.093 0.093

fηc 0.262 0.237
fηb 0.543 � � �

Anomaly kernel Herein Experimentffiffiffiffiffiffi
Dξ

p
0.32 mη 0.560 0.548

ωξ 0.30 mη0 0.960 0.958

cos2 θξ 0.80 flη 0.072 0.090†

−fsη 0.092 0.093†

flη0 0.070 0.073†

fsη0 0.101 0.094†
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recovers all the limits.6 Theway the specific values of sf are
established is addressed in Secs. II C and IV. The following
pattern is observed:

sl ≃ 1.91 > sc ≃ 0.78 > sb ≃ 0.23: ð8Þ

Given the proposed form in Eq. (6), the QPV is determined
by the quark propagator dressing functions. Consequently,
the TFFs are fully expressed in terms of quark propagators
and BS amplitudes, obtained in the RL truncation. We then
employ perturbation theory integral representations (PTIRs)
for those objects, as previously done in the calculation of
the pion distribution amplitude [61] and its EFF [64].
The particular representations were presented in [61] and
discussed herein in the Appendix. PTIRs allow us to
write Eq. (2) in terms of objects which have q-quadratic
forms in the denominator. Thus, after introducing Feynman
parametrization and a suitable change of variables, the
4-momentum integrals can be evaluated analytically.
Subsequently, integrations over the Feynman parameters
and the spectral density are performed numerically. The
complete calculations basically require a series of perturba-
tion-theory-like integrals. This expedites the computation
considerably and allows a direct evaluation of the TFFs in
the whole domain of spacelike momenta. We thus managed,
for the very first time, to compute the γ�γ� → All lowest-
lying neutral pseudoscalar TFFs in this domain.
In using the proposed QPV Ansatz, we overcame the

inconvenience stemming from solving its BS equation and
it expedited the computation of the TFFs. Despite lacking
explicit nonanalytic structures, associated with vector
meson poles in the timelike region, the effects in the
spacelike region are appropriately reproduced (later dis-
cussed in connection with the charge radius). Thus we
expect our approach to be valid by essentially maintaining
the key quantitative details. Our Ansatz follows from using
the gauge technique [90]. Thus it satisfies the longitudinal
Ward-Green-Takahashi identity (WGTI) [91–93], is free of
kinematic singularities, reduces to the bare vertex in the
free-field limit, and has the same Poincaré transformation
properties as the bare vertex.

B. The η− η0 case
Our dealing with the η − η0 mesons is now discussed.

First, we use a flavor basis to rewrite the BS amplitudes
as follows:

Γη;η0 ðk;PÞ ¼ diagð1; 1; 0ÞΓl
η;η0 ðk;PÞ

þ diagð0; 0;
ffiffiffi
2

p
ÞΓs

η;η0 ðk;PÞ; ð9Þ

where we keep using the isospin symmetric limit, such that
l ¼ u; d. The RL kernel by itself does not produce any
mixing between the pure ll̄ and ss̄ states. Thus, the Bethe-
Salpeter kernel is improved by including the non-Abelian
anomaly kernel (see Refs. [60,94]):

Mrs
tuðq; p;PÞ ¼ Krs

tuðq; pÞ þArs
tuðq; p;PÞ;

Ars
tuðq; p;PÞ≡−GAðk2Þ

�
sin2θξ½rγ5�rs½rγ5�tu

þ 1

χ2l
cos2θξ½rγ5γ · P�rs½rγ5γ · P�tu

�
; ð10Þ

with χl ¼ Mlð0Þ and θA controlling the relative strength
between the γ5 and γ5γ · P terms; r ¼ diagð1; 1; νRÞ, where
νR ¼ Mlð0Þ=Msð0Þ ¼ 0.57. It models a dependence on
Uð3Þ flavor-symmetry breaking arising from the dressed-
quark lines which complete a “U-turn” in the hairpin
diagram (see Fig. 1 in Ref. [60]). The strength of the
anomaly is controlled by

GAðk2Þ ¼
8π2

ω4
ξ

Dξ exp½−k2=ω2
ξ �: ð11Þ

Here ωξ and Dξ provide a momentum dependence for the
anomaly kernel, as a generalization to that introduced in
Ref. [94]. The set of Dirac covariants which describe
Eq. (10) can be inferred from the axial-vector WGTI
[94]; we keep those which dominate. The rest of the pieces
are not determined by the WGTI, but they can be driven by
phenomenology [60]. Since the RL truncation does not
produce any mixing by itself, it is natural to require more
input to describe the η − η0 system. In particular, given the
anomaly kernel of Eqs. (10) and (11), we fix Dξ;ωξ and
cos2 θξ to provide a fair description ofmη;η0 and flη;η0 .

7 More
weight is given to the masses, which are better constrained
empirically. Input and output values, together with the RL
counterpart, are listed in Table I. As a reference, if a single
mixing angle scheme (and a pair of ideal decay constants) is
assumed, our results yield fl ≈ 1.08fπ , fs ≈ 1.49fπ and
ϕηη0 ¼ 42.8°. Moreover, note that Dξ ¼ 0 turns off the
non-Abelian anomaly and produces an ideal mixing with
pure ll̄ and ss̄ states, which impliesmη ¼ mπ ¼ 0.135 GeV
and mη0 ¼ mss ¼ 0.698 GeV (fl ≔ fπ ¼ 0.093 GeV,
fs ≔ fss ¼ 0.134 GeV).

C. Kinematical limits

We now turn our attention to the transition form factors,
which we define in the standard way (see e.g., Ref. [95]),
focusing on largeQ2 behavior to start with. It is well known

6Additional subtleties appear in the large-Q2 regime, concern-
ing the QCD evolution of the TFFs. This discussion will be
addressed elsewhere, since it is not relevant to the HLbL
computations, fully determined by the low-Q2 region.

7Thus, in addition to the usual setting of the free RL
parameters [74,78], three more are introduced to obtain six
new observables.
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that above a certain large scale Q̃2
0 > Λ2

QCD, the TFFs take
the form [88,95,96]

Q2FMðQ2; 0Þ → 2fMc2M

Z
1

0

dx
ϕq
Mðx;Q2Þ

x
; ð12Þ

Q2FMðQ2; Q2Þ → 2fMc2M

Z
1

0

dxϕq
Mðx;Q2Þ; ð13Þ

where Q2 > Q̃2
0 and ϕq

Mðx;Q2Þ is the q-flavor valence
quark distribution amplitude of meson M. For notational
convenience, and in order to match experimental normali-
zation, the TFFs have been rescaled as FMðQ2

1; Q
2
2Þ →

FMðQ2
1; Q

2
2Þ=ð2π2Þ. This normalization will be employed

from this point onward. In the asymptotic domain,
Q2 → ∞, where the conformal limit (CL) is valid, one
arrives at

ϕq
Mðx;Q2Þ ⟶

Q2→∞
ϕCLðxÞ ¼ 6xð1 − xÞ; ð14Þ

from which the corresponding limits of the singly off-shell
(SoS) and equally off-shell (EoS) TFFs are obtained:

Q2FMðQ2; 0Þ ⟶
Q2→∞

6fMc2M ≡ F∞
M; ð15Þ

Q2FMðQ2; Q2Þ ⟶
Q2→∞

2fMc2M ¼ F∞
M

3
: ð16Þ

For the pion, c2π ¼ e2ð4 − 1Þ=9, thus arriving at the well-
known limit F∞

M ¼ 2fπ [95,96]. To account for the flavor
structure of the η − η0 systems, Eq. (15) is modified as

Q2Fη;η0 ðQ2; 0Þ ⟶
Q2→∞

6½clflη;η0 ðQ2Þ þ csfsη;η0 ðQ2Þ�
¼ 2½c8f8η;η0 þ c0f0η;η0 ðQ2Þ�; ð17Þ

where cl ¼ 5=9, cs ¼
ffiffiffi
2

p
=9, c8 ¼ 1=

ffiffiffi
3

p
, c0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
; and

f8;0η;η0 are the decay constants in the octet-singlet basis [97].
Owing to the non-Abelian anomaly, the singlet decay
constant, f0η;η0 , and thus fl;sη;η0 , exhibits scale dependence
[98]. Moreover, although the RL gives the correct power
laws as perturbative QCD, it fails to produce the correct
anomalous dimensions. This is readily solved by a proper
evolution of the BS wave function. The way QCD
evolution is implemented in our calculations is detailed
in Refs. [58–60]; this process entails that the correct limits
of Eqs. (15) and (16) are numerically reproduced.
In the opposite kinematical limit of Q2, the Abelian

anomaly dictates the strength of FMð0; 0Þ for the Goldstone
modes. In the chiral limit, this entails

FMð0; 0Þ ¼
1

4π2f0π
; ð18Þ

where the index “0” denotes chiral limit value. The non-
masslessness of the π0 and η mesons produces slight
deviations from the above result [5,99]. Supplemented
by our value f0π ¼ 0.092 GeV, Eq. (18) can be employed
to fix s0 ¼ 1.91 ≃ sl in the QPV, Eq. (6).
On the other hand, the TFFs atQ2 ¼ 0 are also related to

their corresponding decay widths, Γðγγ → MÞ ≔ Γγγ
M, via

the equation

FMð0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Γγγ

M

πα2emm3
M

s
; ð19Þ

with αem ¼ e2=ð4πÞ, the electromagnetic coupling con-
stant. From the computed masses and decay constants in
Table I, one can readily infer the corresponding decay
widths for the ηc and ηb mesons [59]:

Γγγ
ηc;b ¼

8πα2emc4ηc;bf
2
ηc;b

mηc;b

; with cηc;b ¼ 2=3; 1=3: ð20Þ

This yields to the values

Γγγ
ηc ¼ 6.1 keV; Γγγ

ηb ¼ 0.52 keV; ð21Þ

such that sc ¼ 0.78 and sb ¼ 0.23 in order to hold Eq. (19)
true.8 Current algebra is adapted to obtain the analogous
for the η − η0 case [60]:

Γγγ
η;η0 ¼

9α2emm3
η;η0

64π3

�
cl

flη;η0

ðflÞ2 þ cs
fsη;η0

ðfsÞ2
�2
: ð22Þ

Thus, from the values of Table I, one gets

Γγγ
η ¼ 0.42 keV; Γγγ

η0 ¼ 4.66 keV; ð23Þ

predictions which are commensurate with empirical deter-
minations, respectively [5]: 0.516(22) keV, 4.35(36) keV.
The results of (23) fix ss ¼ 0.48 and demand a reduction of
sl ¼ 1.91 → 1.21, for the η − η0 case. This happens for two
reasons: since we give more weight to the correct descrip-
tion of masses, our best set of parameters in Table I
underestimates the value of flη, as compared to phenom-
enology. Second, a key difference of η − η0, with respect to
π0; ηc; ηb, is the presence of the non-Abelian anomaly,
which conceivably generates corrections to Eq. (2) at
infrared momenta. This issue will be addressed elsewhere.
Nonetheless, we can estimate the potential impact of our
model inputs by following the criteria explained in Sec. IV.

8Experimentally, Γγγ
ηc ¼ 5.0ð4Þ keV. Nothing is gained for

the TFF if sc is fixed to reproduce that value [59], and the
corresponding contribution to aμ would be contained within our
final error estimate.
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A comparison of our results for FMð0; 0Þ to the corre-
sponding measurements is given in Table II. Basically, the
error bars are obtained by varying the strength of the
transverse terms in the QPV (sf), as well as the computed
masses. This process does not alter any of the conclusions
presented in Refs. [58–60], nor the agreement those results
have with the empirical data; instead, it allows us to provide
an error estimate in a quantity that could be sensitive to
small variations of the inputs, such as aμ.
Notice that, while the Fð0; 0Þ values of π0, η0 and ηc

show an accurate match with the empirically inferred
results, the η is underestimated and produces a larger error
bar. A similar pattern has been observed for the charge radii
(rM), which is essentially the slope at Q2 ¼ 0. While the π
and ηc charge radii are obtained with desired accuracy
[58,59] (this also occurs with the pion EFF [64,66]), and
the corresponding comparison with the experiment is
within the 1.5% level [5], the η − η0 system suffers from
a larger uncertainty [60]. This is attributed mostly to the
presence of the non-Abelian anomaly and the failure of
Eq. (2) to incorporate beyond RL effects. First, it is worth
mentioning that although our TFF lacks (dynamical) poles
in the timelike region, the spacelike behavior at low-Q2 is
compatible with VMD, FMðQ2; 0Þ ∼ ðQ2 þm2

VÞ−1, as
can be read from Fig. 1. Second, our vertex Ansatz is
further validated by the neat agreement with Ref. [84],
in which the connection between the QPV and the pion
charge radius is clearly established. While our analysis
yields rπ ¼ 0.675ð9Þ, the most complete result in [84] gives
rπ ¼ 0.678 fm. Finally, our π0; ηc; ηb, predictions (obtained
with QPV Ansatz and PTIRs) have been proven entirely
compatible with those approaches that solve the vertex BSE
instead and perform a direct calculation [88,89].
Given the set of SDE-BSE inputs and results, in the next

section we discuss the parametrizations for the obtained
numerical data.

III. PARAMETRIZATIONS AND CONSTRAINTS

Regardless of the approach one takes to compute TFFs, it
is highly convenient to look for certain types of theory-
driven parametrizations for those form factors, such that the
corresponding integrals of aHLbLμ can be computed with
relative ease and with a minimum error following standard
methods [42,52].

Besides accurately fitting the numerical data, we look
for parametrizations that reproduce the low and high Q2

constraints to the fullest extent possible. We now discuss
VMD, LMD and CA parametrizations.

A. LMD parametrizations: Flaws and strengths

For considerable time, the VMD and LMD type of
parametrizations have been quite popular. Among other
attractive aspects, they allow us to rewrite the aHLbLμ -related
integrals in such a way that there is no dependence on
Q1 ·Q2 [2,42].
Nevertheless, VMD and LMD fail in reproducing the

large Q2 limits, yielding an incorrect power law in both the
SoS [Eq. (15)] or EoS [Eq. (16)] cases. Extensions of
LMD that include one or more additional vector mesons
(LMDþ V or LMDþ Vþ V’) can potentially fulfill such
requirements. Due to a higher number of parameters, such

TABLE II. Inferred values of FMð0; 0Þ, considering the error
estimate criteria of Sec. IV. Results are given in GeV−1.

Meson This work Experiment [5]

π0 0.2753(31) 0.2725(29)
η 0.2562(170) 0.2736(60)
η0 0.3495(60) 0.3412(76)
ηc 0.0705(40) 0.0678(30)
ηb 0.0038(2) � � �

FIG. 1. (Upper panel) γγ� → π0 (solid curve). (Lower panel)
γγ� → η; η0. The band delimited by dashed and dot-dashed lines
corresponds to η and η0 TFFs, respectively, with the associate
uncertainties. The dotted, dashed and dot-dashed curves are their
corresponding VMD representations (mV ¼ 0.775 GeV). Our
choice of low-energy experimental data includes CELLO
[100] and CLEO [101] collaborations (we have also included
L3 data [102] for the η0). Additionally, we display the most recent
x ¼ 0 values from PDG [5,99]. The mass units are in GeV.
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attempts can provide a more reliable fit in a larger domain
of momenta.
In general terms, with x ¼ Q2

1 and y ¼ Q2
2, one can

define the LMDþ VN−1 parametrizations as follows:

Pðx; yÞ ¼
X
a;b

ca;bðxþ yÞaðxyÞb; ð24Þ

fa; b ∈ Nj0 ≤ aþ b ≤ Ng

Rðx; yÞ ¼
YN−1

i¼0

ðxþM2
Vi
ÞðyþM2

Vi
Þ; ð25Þ

FMðx; yÞ ¼
Pðx; yÞ
Rðx; yÞ ; ð26Þ

where ca;b and MVi
are the fitting parameters (MVi

, can be
related to the ground state vector mesons and its excita-
tions). N ¼ 1 reproduces the usual LMD parametrization.
Demanding cN;0¼c0;N ¼0, both xFMðx; 0Þ and xFMðx; xÞ
tend to a constant as x grows. Thus one can impose the
asymptotic constraints of Eqs. (15) and (16) and get

cN−1;0 ¼ F∞
M

�YN−1

i¼0

M2
Vi

�
; c1;N−1 ¼

1

6
F∞
M: ð27Þ

However, for any finite y0 ≠ 0, xFMðx; y0Þ diverges lin-
early with cN−1;1 þ y0 cN−2;2 as x → ∞. Consequently, the
asymptotic limits cannot be recovered for arbitrary y0 and
the accuracy of the fit is compromised as x increases, which
makes this parametrization unsatisfactory.

B. Canterbury approximants

A more convenient approach to the problem at hand is
through the so-called Canterbury approximants [73], which
have been recently employed to evaluate aHLbLμ [55,74].
The latter reference follows another SDE treatment to
evaluate the pole contributions of π0; η; η0 to aHLbLμ .
We explore this alternative to parametrize our numerical

solutions and calculate the respective contributions to
aHLbLμ . Consider a function fðx; yÞ symmetric in its vari-
ables and with a known series expansion:

fðx; yÞ ¼
X
i;j

ci;jxiyj; ðci;j ¼ cj;iÞ:

CAs are defined as rational functions constructed out of
such polynomials PNðx; yÞ and RMðx; yÞ:

CN
Mðx; yÞ ¼

PNðx; yÞ
RMðx; yÞ

¼
P

N
i;j¼0 aijx

iyjP
M
i;j¼0 bijx

iyj
; ð28Þ

whose coefficients aij; bij fulfill the mathematical rules
explained in detail in Ref. [55]. We shall employ a certain
C1
2ðx; yÞ such that the TFFs can be written as

Pðx; yÞ ¼ a00 þ a10ðxþ yÞ þ a01ðxyÞ; ð29Þ

Rðx; yÞ ¼ 1þ b10ðxþ yÞ þ b01ðxyÞ þ b11ðxþ yÞðxyÞ
þ b20ðx2 þ y2Þ; ð30Þ

FMðx; yÞ ¼
Pðx; yÞ
Rðx; yÞ : ð31Þ

The large number of parameters can be reduced
straightforwardly:

(i) a00 ¼ FMð0; 0Þ, low energy constraint.
(ii) a01 ¼ ð2=3Þb11F∞

M, symmetric limit.
(iii) a10 ¼ b20ð1þ δBLÞF∞

M, fully asymmetric limit.
It has been seen that the pion TFF, xFπðx; 0Þ, marginally
exceeds its asymptotic limit in the domain x > 20 GeV2

[58] (subsequently recovering it as x continues to grow).
Thus, we have included a parameter δBL to improve the
quality of the fit for our given set of numerical data. This is
by no means an implication that the Brodsky-Lepage limit
of Eq. (15) is violated; it is rather a numerical artifact to
obtain a better interpolation.
The parametrization of Eq. (31) cannot be recast in any

way so that the Q1 ·Q2 dependence in the aHLbLμ integrals
disappears, but alternative methods can be implemented
[52,55]. Unlike LMDþ VN−1 parametrization, it also has a
well-defined limit when one of the variables is finite (but
not zero) and the other tends to infinity. Since the large Q2

domain is well under control, it enhances its reliability even
far beyond the domain that contributes the most to aHLbLμ ,
and that of the available data set.

C. LMD: ηc and ηb
As explained in Ref. [59], the ηc;b TFFs lie below their

corresponding asymptotic limits even at very large values
of momentum transfer.9 Imposing any asymptotic con-
straint is useless and potentially harmful for the accuracy of
the fit. Moreover, those form factors are harder due to the
larger masses of the ηc;b mesons. In fact, the curvature of ηb
TFF is only very pronounced above a couple of hundred
GeV2 [89].
Therefore, a simple LMD-like form can be employed:

FηcðηbÞðx; yÞ ¼
c00 þ c10ðxþ yÞ

ðxþM2
V0
ÞðyþM2

V0
Þ ; ð32Þ

9In a less noticeable way, this also happens for the η0. Thus,
we found convenient to redefine F∞

η0 →x0Fðx0;0Þ, where x0¼
70GeV2. We note that the symmetric form factor is not affected
by this. Particularly, it is recovered exactly, to our numerical
precision, for x ¼ y ¼ 10 GeV2.
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where we findMV0
≔3.097GeV¼mJ=ψ , c00¼6.5613GeV3

and c10 ¼ 0.0611 GeV for ηc; MV0
≔ 9.460 GeV ¼ mΥ,

c00 ¼ 30.8424 GeV3 and c10 ¼ 0.0426 for ηb. Here the
flaws of the large-Q2 behavior of the LMD parametrizations
are irrelevant: those appear far beyond the domain of
integration. Notably, the LMD representation of the ηb
TFF, for x; y > 20 GeV2, reproduces the numerical result
within 1% error. In the next section we present our numerical
results for aμ.

IV. RESULTS

We display the γγ� → π0, η, η0 TFFs in Fig. 1 and their
respective comparisons with available low-energy exper-
imental data [5,99–102]; a keen agreement is exhibited.
The ηc result is plotted in Fig. 2 and the analogous for ηb in
Fig. 3. It is seen that the ηc prediction matches the
experimental data [103] and the corresponding for ηb is
in accordance with the nonrelativistic QCD (nrQCD)
approach [104]. In the domain of interest, the LMD
representations of ηc and ηb TFFs accurately reproduce
the numerical SDE calculations. The corresponding results
for all the pseudoscalars until much higher values of
the probing photon momentum can be consulted in
Refs. [58–60]. Notably, the DoS extension we present in
this work ensures Fπðx; 0Þ and Fπðx; xÞ converge to their
well-defined asymptotic limits, as can be observed in
Fig. 4. The CAs faithfully accommodate this numerical
behavior. Additionally, the charge radius is reproduced to
1.5% accuracy.
As we have discussed, all the pieces in our SDE-BSE

treatment, in particular the QPVAnsatz, ensure an accurate
description of the π0, ηc and ηb mesons; but the case of

η − η0 is not completely satisfactory. This occurs mostly
due to the presence of the non-Abelian anomaly which,
in principle, could introduce infrared corrections to the
impulse approximation [60]. To account for the influence
of the model for the QPV and other assumptions, first we
vary the strength of the transverse terms in the QPV such
that: (1) we reproduce (as much as possible) the empirical
values of Fη;η0 ð0; 0Þ and (2) a rather large uncertainty is
included in the more sensitive domain, around Q2 ∼
0.4 GeV2. From the computed decay constants, one gets
a value of Fηð0; 0Þ which is about 10% smaller than the
empirical one, thus producing a broader band for the η
meson. In the case of π0 and ηc, without the presence of the
non-Abelian anomaly, the goal of this minimal variation is
to produce an error band in the vicinity ofQ2 ¼ 0, such that
the uncertainty associated with Fπ;ηcð0; 0Þ is comparable in
size to that reported in PDG [5]. The ηb TFF has not been
measured yet. To be on the safe side, we include error bars

FIG. 2. γ�γ� → ηc TFFs. The (green) solid line corresponds to
the direct numerical calculation of the SoF TFF, while the (red)
dashed line is the analogous to the EoS case. The narrow bands
are the corresponding results from our LMD representation. In
the embedded plot, we compare our SDE prediction of γ�γ → ηc
with the available experimental data from BABAR [103]. The
form factors have been normalized to unity. The mass units are
in GeV.

FIG. 3. γ�γ� → ηb TFFs. The (green) solid line corresponds to
the direct numerical calculation of the SoF TFF, while the (red)
dashed line is the analogous to the EoS case. The narrow bands
are the corresponding results from our LMD representation. In
the embedded plot, we compare our SDE prediction of γγ� → ηb
with the nrQCD calculation from [104] (gray band). The form
factors have been normalized to unity. The mass units are in GeV.

FIG. 4. γ�γ� → π0 TFF. The mass units are in GeV.
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on the charge radius by resorting to the nrQCD result. This
produces a 5% error around Fηbð0; 0Þ. Any additional but
reasonable change in the Bethe-Salpeter kernel parameters
has a sufficiently small impact [66,74] and we find it to
be contained within those bands. Furthermore, small
variations of the meson masses also have negligible effects
on the TFFs (in fact, one can take mπ ¼ 0 with impunity),
but they exhibit moderate to large impact on aμ. Thus
we allow ourselves to vary mπ ∼ 0.135–0.140 GeV, mη ∼
0.548–0.560 GeV and mη0 ∼ 0.956–0.960 GeV.
Putting all together, we obtain

aπ
0−pole

μ ¼ ð6.14� 0.21Þ × 10−10;

aη−poleμ ¼ ð1.47� 0.19Þ × 10−10;

aη
0−pole
μ ¼ ð1.36� 0.08Þ × 10−10;

aηc−poleμ ¼ ð0.09� 0.01Þ × 10−10;

aηb−poleμ ¼ ð0.26� 0.01Þ × 10−13: ð33Þ

Our SDE prediction of aπ
0−pole

μ is compatible with
other reported values [42,52,55,56,105,106]. For example,

aπ
0−pole

μ ¼ ð5.81� 0.09� 0.09þ0.5
−0 Þ × 10−10 according to

Ref. [56] (resonance chiral Lagrangians), while

Hoferichter et al. obtain aπ
0−pole

μ ¼ ð6.26þ0.30
−0.25Þ × 10−10

(dispersive evaluation). Reference [55] reports aπ
0−pole

μ ¼
ð6.36� 0.26Þ × 10−10 (CAs) and a recent SDE evaluation

[74] obtains aπ
0−pole

μ ¼ ð6.26� 0.13Þ × 10−10.
From the η − η0 pole contributions, our full-SDE results

yield aηþη0−pole
μ ¼ ð2.83� 27Þ × 10−10.

Assuming a two-angle mixing scheme in the flavor basis
[107], and a chiral approach [52],

Fsðx; yÞ ¼ Fl¼u;dðx; yÞ ¼ Fπðx; yÞ;

one can write the η − η0 TFFs in terms of Fπðx; yÞ. This
simplification yields aηþη0−pole

μ ¼ ð2.86� 0.42Þ × 10−10,
which is consistent with our result albeit with a larger
error. The SDE result from Ref. [74] follows a symmetry-
preserving RL approach to compute Flðx; yÞ and Fsðx; yÞ,
such that the physical states η − η0 are obtained from there
after assuming a two-angle mixing scheme. It is shown
that whether one takes the chiral approach or not, the sum
of the η − η0 contributions to aμ remains the same (although
the individual contributions are different). This is due to
cancellations that occur because of the structure of the
mixing matrix. However, in our SDE-BSE treatment, the
mixing between the l and s flavors is produced directly
due to the presence of the non-Abelian anomaly kernel in
the BSE, Eq. (10). It is the anomaly kernel that produces the
mixing; no particular mixing scheme is assumed. For our

data sets, limited to the range x; y ≤ 10 GeV2, we show the
CA parameters in Table III.
Regarding the heavy mesons, although the value of ηb

is 3 orders of magnitude smaller, the ηc is commensurate
with the current experimental and theoretical error bars.
Moreover, our obtained value is fully compatible with that
reported in Ref. [108], aηc−poleμ ¼ ð0.08Þ × 10−10. Thus, this
contribution might not be omitted when the theoretical
calculations reach a higher level of precision. Also, it could
serve as an estimate for potential nonperturbative correc-
tions to the charm loop.10

V. CONCLUSIONS

It is highly timely to revisit the computation of aHLbLμ on
the eve of the FNAL (and hopefully J-PARC) improved
measurements. We calculate the dominant piece of this
observable (coming mainly from the π0 pole and second-
arily from the η and η0 poles). For the first time, the
subleading contributions of ηc and ηb poles were obtained.
As a result of our analysis, we find

aπ
0−pole

μ ¼ ð6.14� 0.21Þ × 10−10;

alight−poleμ ¼ ð8.97� 0.48Þ × 10−10;

aall−poleμ ¼ ð9.06� 0.49Þ × 10−10:

Our findings for the light pseudoscalars are compatible
with previous determinations and have a comparable
uncertainty. While the ηb result is negligible, the magnitude
of aηc−poleμ (confirmed in Ref. [108]) is sizable as compared
with the contemporary error bars; thus, it could promote
more theoretical calculations on the topic.
Earlier and recent SDE works [46,74,109] have shown

this continuum approach as a promising tool in under-
standing the QCD contributions to aμ. This is clearly
supported by the consistency with our predictions and those
from [74]. Moreover, the present work heavily relies on our
earlier studies [58–60], where we compute the pseudoscalar
transition form factors: γγ�→fπ0;η;η0;ηc;ηbg, all lowest-
lying neutral pseudoscalars. Such calculations are based

TABLE III. CA parameters, from Eq. (31), of FMð0; 0Þ (which
has units of GeV−1 and the parameters have units accordingly).
For the pion, δBL ¼ 0.0437 and δBL ¼ 0 in the other cases.

Meson b01 b10 b11 b20

π0 6.1301 2.7784 0.2147 1.1301
η 14.5769 4.1981 0.4323 3.7460
η0 5.3256 2.6822 0.0245 1.0933

10P. Masjuan, P. Sanchez-Puertas, and M. Hoferichter con-
firmed to us that they reached compatible values for the ηc
contribution.
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upon a systematic and unified treatment of QCD’s SDEs.
Several efforts have followed this approach to compute a
plethora of hadron properties, with the resulting predictions
invariably being in agreement with or confirmed by exper-
imental data and lattice QCD simulations (see Refs. [72,110]
for recent reviews).
Our previous research [58–60] and the resulting current

work not only explain the existing data accurately but are
also quantitatively predictive for the ones to be measured in
modern facilities. Thus, we believe this work is useful in
the collective effort to reduce the error of the SM prediction
of aμ so as to maximally benefit from the forthcoming
improved measurements and hopefully find indirect evi-
dence for new physics in the future.
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APPENDIX: QUARK PROPAGATOR
AND BS AMPLITUDES

It is convenient to express the quark propagator in terms
of complex conjugate poles (ccp). Omitting flavor indices,
it can be expressed as

SðpÞ ¼ −iγ · pσvðp2Þ þ σsðp2Þ

¼
Xjm
j¼1

�
zj

iγ · pþmj
þ z�j
iγ · pþm�

j

�
; ðA1Þ

where zj; mj are obtained from a best fit to the numerical
solutions, ensuring ImðmjÞ ≠ 0 ∀ j, a feature consistent
with confinement [61]. We find that jm ¼ 2 is adequate to
provide an accurate interpolation.

The BS amplitude of a neutral pseudoscalar is written in
terms of four covariants, namely,

ΓMðk;PÞ ¼ γ5fF 1 þ γ · PF 2 þ ðk · PÞγ · PF 3

þ i½γ · k; γ · P�F 4g: ðA2Þ

Each scalar function, F k ¼ F ðk;PÞ, is split in two parts
and can be parametrized in terms of PTIRs in the following
way:

F ðk;PÞ ¼ F iðk;PÞ þ F uðk;PÞ; ðA3aÞ

F iðk; PÞ ¼ ciF

Z
1

−1
dzρνiF ðzÞ½aF Δ̂

4
Λi
F
ðk2zÞ;

þ a−F Δ̂
5
Λi
F
ðk2zÞ�; ðA3bÞ

F uðk;PÞ ¼ cuF

Z
1

−1
dzρνuF ðzÞΔ̂

luF
Λu
F
ðk2zÞ; ðA3cÞ

with Δ̂ΛðsÞ ¼ Λ2ΔΛðsÞ, k2z ¼ k2 þ zk · P, a−F ¼ 1 − aF .
The indices “i” and “u” denote the connection with the
infrared and ultraviolet behaviors of the BS amplitude and
the spectral density:

ρνðzÞ ¼
Γ½3

2
þ ν�ffiffiffi

π
p

Γ½1þ ν� ð1 − z2Þν: ðA4Þ

The interpolating parameters are obtained through fitting to
the Chebyshev moments:

F nðk2Þ ¼
2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
F ðk;PÞUnðxÞ; ðA5Þ

with n ¼ 0; 2, where Un is an order-n Chebyshev poly-
nomial of the second kind. F 4ðk;PÞ is small and has no
impact, hence it is omitted in all cases. For similar reasons,
F 3ðk;PÞ might be omitted for η0 and ηb as well.
The forms given in Eqs. (A1)–(A3) have been proven

undoubtedly useful; their specific interpolating values are
presented in Refs. [58–60].
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