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In this article, we employ transverse Takahashi identities to impose valuable nonperturbative constraints
on the transverse part of the fermion-photon vertex in terms of new form factors, the so-called Y functions.
We show that the implementation of these identities is crucial for ensuring the correct local gauge
transformation of the fermion propagator and its multiplicative renormalizability. Our construction
incorporates the correct symmetry properties of the Yi under charge conjugation operation as well as
their well-known one-loop expansion in the asymptotic configuration of incoming and outgoing momenta.
Furthermore, we make an explicit analysis of various existing constructions of this vertex against the
demands of transverse Takahashi identities and the previously established key features of quantum
electrodynamics, such as gauge invariance of the critical coupling above which chiral symmetry is
dynamically broken. We construct a simple example in its quenched version and compute the mass function
as we vary the coupling strength and also calculate the corresponding anomalous dimensions γm. There is
an excellent fit to the Miransky scaling law, and we find γm ¼ 1 rather naturally in accordance with some
earlier results in literature, using arguments based on the Cornwall-Jackiw-Tomboulis effective potential
technique. Moreover, we numerically confirm the gauge invariance of this critical coupling.
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I. INTRODUCTION

A quantum field theory can be considered completely
solved if we are able to compute its full set of n-point Green
functions. However, these Green functions are infinite
in number. Moreover, these are all intertwined through
highly nonlinear coupled integral equations, known as the
Schwinger-Dyson equations (SDEs). A brute force method
to compute them is a wild goose chase.
It is widely believed that a satisfactory determination of

relevant physical observables through a systematic trunca-
tion scheme for this infinite tower of equations is achiev-
able if we preserve the key features and symmetries of the
underlying theory. Perturbation theory provides an excel-
lent example of such an approximation scheme. However,
when the interaction strength grows and can no longer be
used as a perturbative expansion parameter, one resorts to
truncations which need to be carefully constructed in order
to retain the essential features of the original theory, while
maintaining contact with experimental data at the same
time. Quantum chromodynamics (QCD) is a realization of
this scenario in its infrared domain. Considerable progress
has been made in the past decades to study its first few

Green functions, e.g., the gluon propagator [1–8] and the
quark-gluon vertex [9–19] whose knowledge consequently
provides predictions for QCD and hadron physics, e.g.,
[20–24]; also see reviews [25–29] and references therein.
In several hadronic physics studies, such as electromag-

netic and transition form factors [21,23,30–33], probes
are generally electromagnetic in nature and many SDE cal-
culations crucially rely on how photons interact with
quarks. Thus, quantum electrodynamics (QED) serves as
a useful platform to study SDE truncations and provide
improvements to preserve its key features, such as its gauge
invariance, its renormalizability, and the recuperation of the
well-known S-matrix perturbative expansion for its Green
functions in the weak coupling regime, which it maintains
at all accessible energies. In particular, study of the fermion
propagator in QED generally amounts to requiring a
physically meaningful and reliable Ansatz for the three-
point fermion-photon vertex. Gauge invariance provides an
essential ingredient in this connection. The gauge technique
of Salam, Delbourgo, and collaborators was developed to
solve the constraints of the well-known Ward-Fradkin-
Green-Takahashi identity (WFGTI) [34–37], writing the
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Green functions in terms of spectral representations
[38–40]. However, such an approach, despite its elegant
and formal results [41,42] is not amicable to straight-
forward computations [43]. The WFGTI allows us to
expand out the vertex in terms of a well-constrained
longitudinal part [44] and an undetermined transverse part.
Several efforts alternative to the gauge technique start from
making an Ansatz for this latter part and proceed from
thereon.
A natural question to ask is whether the transverse part

can be constrained through any other symmetry principle?
Whereas the usual WFGTI relates the divergence of

the three-point fermion-photon vertex to the inverse fer-
mion propagator, there exist transverse Takahashi identities
(TTI) which play a similar role for the curl of the fermion-
photon vertex [45–49]. However, in addition to the inverse
fermion propagator and the vector vertex, these identities
also bring into play a nonlocal axial-vector vertex as well
as new inhomogeneous tensor and axial-tensor vertices.
Consequently, TTI are richer and more complicated in their
structure. In the past, they have been verified to one-loop
order [50,51]. More recently, practical implications of TTI
have been investigated in [52,53] to get insight into the
nonperturbative forms of vector and axial-vector vertices.
In this article, we intend to study constraints of TTI

on the transverse part of the fermion-photon vertex. Note
that TTI do not modify the usual WFGTI in any way.
However, we realize that they are crucially connected to
another consequence of local gauge covariance, namely
the Landau-Khalatnikov-Fradkin transformations (LKFT),
derived in [35,54–56]. LKFT are a well defined set of
transformations which describe the response of the Green
functions to an arbitrary gauge transformation. These
transformations leave the SDEs and the WFGTI form
invariant. LKFT potentially play an important role in
imposing valuable constraints on the fermion-photon vertex
and obtaining gauge invariant chiral symmetry breaking;
see, e.g., Refs. [57–72]. More recently, these transforma-
tions have also been derived for QCD [73,74].
Both the TTI and the LKFT [through the multiplicative

renormalizability (MR) of the fermion propagator] con-
strain the transverse fermion-photon vertex. Therefore,
it is reasonable to seek a combined constraint which would
help us converge on pinning down this elusive part of the
vertex. The fact that MR constrains the transverse vertex
has already been known for some time [42,75–77]. Later
works in the literature involving similar considerations in
constructing a refined fermion-photon vertex can be found
in [12,78–85].
An important issue relevant to our current work con-

cerns the usage of the TTI-constrained vertex to study
dynamical chiral symmetry breaking (DCSB) or dyna-
mical mass generation for fermions as a consequence of
enhanced interaction strength. This is a strictly nonpertur-
bative phenomenon and a transcendental topic in QCD,

where it induces measurable effects in numerous hadron
observables. Therefore, physically meaningful truncations
of QCD’s SDEs demand incorporation of DCSB through
the relevant Green functions, in particular the quark
propagator and the quark-gluon vertex. Regarding the
latter, valuable progress has been made in both lattice
[86–92] and continuum studies. However, due to the non-
Abelian nature of QCD, investigating the impact of DCSB
on the quark-gluon vertex, and vice versa, from first
principles, is still a theoretical challenge. A thorough
investigation of the fermion-photon vertex and chiral
symmetry breaking in QED is likely to provide a bench-
mark for the corresponding studies in QCD.
Although QED manifests a perturbative behavior at all

observable scales, an intense background electromagnetic
field can trigger a transition from perturbative to non-
perturbative dynamics, the well-known magnetic catalysis;
see, e.g., [93–101]. Even a toy QED with an artificially
scaled up coupling exhibits this phenomenon. Such a phase
transition has long been studied. It is characterized by a
critical coupling, αc, above which DCSB takes place; see
[13,78,102] and references therein. Since this critical
coupling corresponds to a recognizable phase transition,
it is considered to be a physical observable, and hence a
gauge invariant parameter. This independence of αc on the
gauge parameter has long been used as a further require-
ment to constrain the transverse vertex [13], and we follow
this argument in the present article.
The TTI connect the transverse structure of the fermion-

photon vertex to a set of unknown scalar functions Yi
related to a nonlocal axial-tensor mentioned before. MR of
the electron propagator implies that these functions cannot
be ignored. Instead, MR constrains their form. This pro-
cedure involves an unknown function WðxÞ of a dimen-
sionless ratio x of the incoming and outgoing fermion
momenta. It satisfies an integral constraint which guaran-
tees MR of the electron propagator in the leading logarithm
approximation (LLA). Implementing charge conjugation
symmetry on the integration kernels involved in the
fermion propagator SDE, it is possible to parametrize Yi
in terms of one single scalar, a priori unknown function
T ðk2; p2Þ, which encodes the effect of the fully dressed
fermion-photon vertex on the fermion propagator. This
general procedure fixes three of the Y functions. An
additional constraint comes from demanding gauge inde-
pendent chiral symmetry breaking. We work in the
quenched approximation and obtain a self-consistent sol-
ution for T ðk2; p2Þ. Following the lead in [12], where MR
of both the fermion and the photon propagators are
exploited, we expect our analysis and the corresponding
study of DCSB to be applicable to full unquenched QED,
assuming the nonperturbative realization of MR. This
endeavor will be undertaken in the future.
In this article, we work in Euclidean space. Thus, for γ

matrices we have fγμ; γνg ¼ 2δμν and γ
†
μ ¼ γμ, where δμν is
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the Euclidean metric. Furthermore, we define γ5 ¼
γ4γ1γ2γ3, with Tr½γ5γμγνγαγβ� ¼ −4ϵμναβ.
This paper is organized as follows: in Sec. II, we review

the WFGTI for the three-point vertex in QED, define the
longitudinal vertex, write down the transverse part in a
general basis, following [44], and highlight the symmetry
properties of the transverse form factors under charge
conjugation operation. In Sec. III, we introduce Abelian
TTI for the vertex and expand out the transverse form
factors in terms of the Y functions. We then invert these
relations and impose a perturbative constraint on Yi in the
asymptotic limit of k2 ≫ p2. In Sec. IV, SDE for the
fermion propagator is presented. We write it in terms of
the Y functions and discuss the quenched approximation.
In Sec. V, we study the requirement of MR and the power
law solution for the wave function renormalization of
the fermion propagator within the LLA. We show how
the requirement of MR imposes an integral constraint
on the form factors of the transverse vertex, in terms of
the function WðxÞ. In Sec. VI, we discuss a few examples
illustrating the need and importance of the Y functions.
In Sec. VII, we construct simple examples to study DCSB
and see how it naturally incorporates gauge independence
of the critical coupling αc. In Sec. VIII, we present our
conclusions and discuss prospects for future research.

II. VERTEX DECOMPOSITION

In its general decomposition, the three-point fermion-
photon vertex can be written in terms of 12 independent
spin structures. For the kinematical configuration of Fig. 1,
the WFGTI associated with this vertex takes the form

iqμΓμðk; pÞ ¼ S−1ðkÞ − S−1ðpÞ; ð1Þ

where q ¼ k − p. This identity allows us to split the vertex
as a sum of longitudinal and transverse components, as
suggested by Ball and Chiu [44]:

Γμðk; pÞ ¼ ΓL
μ ðk; pÞ þ ΓT

μ ðk; pÞ: ð2Þ

The longitudinal part ΓL
μ ðk; pÞ alone satisfies the WFGTI

(1), and consumes four of the 12 independent spin
structures (one of them is zero in QED), so that [44]

ΓL
μ ðk; pÞ ¼ aðk2; p2Þγμ þ

bðk2; p2Þ
2

tμγ · t − icðk2; p2Þtμ
ð3Þ

with t ¼ kþ p, and

aðk2; p2Þ ¼ 1

2

�
1

Fðk2;Λ2Þ þ
1

Fðp2;Λ2Þ
�
;

bðk2; p2Þ ¼
�

1

Fðk2;Λ2Þ −
1

Fðp2;Λ2Þ
�

1

k2 − p2
;

cðk2; p2Þ ¼
�
Mðk2;Λ2Þ
Fðk2;Λ2Þ −

Mðp2;Λ2Þ
Fðp2;Λ2Þ

�
1

k2 − p2
; ð4Þ

where Λ is an ultraviolet cutoff regulator. M and F are the
mass function and the wave function renormalization,
respectively, related to the fermion propagator SðkÞ through

SðkÞ ¼ Fðk2;Λ2Þ
iγ · kþMðk2;Λ2Þ : ð5Þ

At the tree level, Fðk2;Λ2Þ ¼ 1 and Mðk2;Λ2Þ ¼ m0,
where m0 is the bare mass of the fermion.
The transverse part ΓT

μ ðk; pÞ of the vertex decomposition
(2), which remains undetermined by the WFGTI, is
naturally constrained by

qμΓT
μ ðk; pÞ ¼ 0: ð6Þ

In general, the ultraviolet finite transverse vertex can be
expanded out in terms of eight vector structures and their
corresponding scalar form factors τiðk; pÞ [44]:

ΓT
μ ðk; pÞ ¼

X8
i¼1

τiðk; pÞTi
μðk; pÞ: ð7Þ

Moreover, for the kinematical configuration of Fig. 1,
we define

T1
μðk; pÞ ¼ i½pμðk · qÞ − kμðp · qÞ�;

T2
μðk; pÞ ¼ ½pμðk · qÞ − kμðp · qÞ�ðγ · tÞ;

T3
μðk; pÞ ¼ q2γμ − qμðγ · qÞ;

T4
μðk; pÞ ¼ iq2½γμðγ · tÞ − tμ� þ 2qμpνkρσνρ;

T5
μðk; pÞ ¼ σμνqν;

T6
μðk; pÞ ¼ −γμðk2 − p2Þ þ tμðγ · qÞ;

T7
μðk; pÞ ¼

i
2
ðk2 − p2Þ½γμðγ · tÞ − tμ� þ tμpνkρσνρ;

T8
μðk; pÞ ¼ −iγμpνkρσνρ − pμðγ · kÞ þ kμðγ · pÞ; ð8Þ

with

q=k−p

p

k

Γμ

FIG. 1. Diagrammatic representation of the full three-point
vertex Γμðk; pÞ, with momentum flow indicated.

TRANSVERSE TAKAHASHI IDENTITIES AND THEIR … PHYS. REV. D 100, 054028 (2019)

054028-3



σνρ ¼
i
2
½γν; γρ�: ð9Þ

This basis is not exactly the one adopted in [44]. We choose
to work with a modification of this initial basis which was
put forward in [103] and later employed in [104] as well.
This latter choice ensures all transverse form factors of
the vertex are independent of any kinematic singularities
in one-loop perturbation theory in an arbitrary covariant
gauge.
As stated earlier in Sec. I, any Ansatz for the full vertex

must have the same transformation properties as the bare
vertex under charge conjugation operation. This requires
all the τi’s in (7) to be symmetric under the interchange
k ↔ p, except τ4 and τ6, which are odd:

τiðk; pÞ ¼ τiðp; kÞ; i ¼ 1; 2; 3; 5; 7; 8; ð10Þ

τiðk; pÞ ¼ −τiðp; kÞ; i ¼ 4; 6: ð11Þ

From Eq. (4), it is obvious that aðk2; p2Þ, bðk2; p2Þ, and
cðk2; p2Þ are symmetric under k ↔ p, as they should be, in
order to preserve the correct transformation properties
under charge conjugation operation for the full vertex.
Although the longitudinal scalar functions (4) are fixed

by the WFGTI (1), the transverse scalar functions in
decomposition (7) remain unknown. In the next section,
we introduce the TTIs for the three-point vertex in QED,
which provide a powerful tool in constructing these non-
perturbative transverse functions.

III. TRANSVERSE TAKAHASHI IDENTITIES

The TTIs for vector (Γμ) and axial-vector (ΓA
μ ) vertices in

QED, related to a fermion with bare mass m0, read [52]

qμΓνðk; pÞ − qνΓμðk; pÞ ¼ S−1ðpÞσμν þ σμνS−1ðkÞ
þ 2im0Γμνðk; pÞ
þ tαϵαμνβΓA

β ðk; pÞ þ AV
μνðk; pÞ;

ð12Þ

qμΓA
ν ðk; pÞ − qνΓA

μ ðk; pÞ ¼ S−1ðpÞσ5μν − σ5μνS−1ðkÞ
þ tαϵαμνβΓβðk; pÞ þ VA

μνðk; pÞ;
ð13Þ

where σ5μν ¼ γ5σμν and Γμνðk; pÞ is an inhomogeneous
tensor vertex. The last two tensor structures in Eqs. (12)
and (13), AV

μν and VA
μν, are related to the momentum space

expressions for nonlocal axial-vector and vector vertices,
whose definitions involve a gauge-field-dependent line
integral. These nonperturbative identities are valid for
any covariant gauge, and they do not have explicit
dependence on the covariant gauge parameter.

The vector and axial-vector TTIs are intricately coupled
to each other via the nonlocal terms AV

μνðk; pÞ and
VA
μνðk; pÞ, which are complicated even at one-loop order

[50,51]. Following the procedure described in Ref. [52],
useful progress has been made to disentangle this inter-
dependence. Notice that Eqs. (12) and (13) provide addi-
tional constraints on the fermion-photon vertex. We now set
out to incorporate these constraints into its nonperturbative
construction in terms of conveniently parametrized Y
functions.
In order to project out transverse form factors from

the TTIs, Eqs. (12) and (13), we introduce the following
tensors:

T1
μν ¼

1

2
ϵαμνβtαqβ; ð14Þ

T2
μν ¼

1

2
ϵαμνβγαqβ: ð15Þ

By contracting the axial-vector identity (13) with tensors
(14) and (15), the left-hand sides of the resulting equations
reduce to zero, while the right-hand sides yield the
following results:

ðq · tÞðt · Γðk; pÞÞ ¼ T1
μν½S−1ðpÞσ5μν − σ5μνS−1ðkÞ�

þ t2ðq · Γðk; pÞÞ þ T1
μνVA

μν; ð16Þ

ðq · tÞðγ · Γðk; pÞÞ ¼ T2
μν½S−1ðpÞσ5μν − σ5μνS−1ðkÞ�

þ ðγ · tÞðq · Γðk; pÞÞ þ T2
μνVA

μν: ð17Þ

These expressions only involve the vector vertex Γμðk; pÞ
and do not contain explicit dependence on the fermion mass
m0. Information about the axial-vector vertex ΓA

μ ðk; pÞ can
be obtained through an analogous procedure involving
the vector TTI, Eq. (12). Although the terms T1

μνVA
μν and

T2
μνVA

μν are still equally unknown, they are Lorentz scalar
objects and can thus be conveniently expressed as follows:

iT1
μνVA

μν ¼ IDY1ðk; pÞ þ iðγ · qÞY2ðk; pÞ
þ iðγ · tÞY3ðk; pÞ þ ½γ · q; γ · t�Y4ðk; pÞ; ð18Þ

iT2
μνVA

μν ¼ iIDY5ðk; pÞ þ ðγ · qÞY6ðk; pÞ
þ ðγ · tÞY7ðk; pÞ þ i½γ · q; γ · t�Y8ðk; pÞ; ð19Þ

where Yiðk; pÞ are hitherto unconstrained scalar functions
and ID is the identity matrix. Projections of Eqs. (16) and
(17) lead to a set of eight linearly independent, coupled
linear equations that fix the eight transverse scalar functions
τi in terms of the Y functions defined via Eqs. (18) and (19).
From Eqs. (7), (8), and (16)–(19), it is possible to project

out the scalar form factors τi:
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τ1ðk; pÞ ¼ −
Y1

2ðk2 − p2Þ∇ðk; pÞ ; ð20Þ

τ2ðk; pÞ ¼ −
Y5 − 3Y3

4ðk2 − p2Þ∇ðk; pÞ ; ð21Þ

τ3ðk; pÞ ¼
1

2
bðk2; p2Þ þ 2ðk2 − p2ÞY2 − t2ðY3 − Y5Þ

8ðk2 − p2Þ∇ðk; pÞ ;

ð22Þ

τ4ðk; pÞ ¼ −
ðk2 − p2Þð6Y4 þ YA

6 Þ þ t2YS
7

8ðk2 − p2Þ∇ðk; pÞ ; ð23Þ

τ5ðk; pÞ ¼ −cðk2; p2Þ − 2Y4 þ YA
6

2ðk2 − p2Þ ; ð24Þ

τ6ðk; pÞ ¼
2q2Y2 − ðk2 − p2ÞðY3 − Y5Þ

8ðk2 − p2Þ∇ðk; pÞ ; ð25Þ

τ7ðk; pÞ ¼
q2ð6Y4 þ YA

6 Þ þ ðk2 − p2ÞYS
7

4ðk2 − p2Þ∇ðk; pÞ ; ð26Þ

τ8ðk; pÞ ¼ −bðk2; p2Þ − 2YA
8

k2 − p2
; ð27Þ

where we have employed the obvious simplifying notation
Yi ≡ Yiðk; pÞ. Moreover, we have introduced the Gram
determinant

∇ðk; pÞ ¼ k2p2 − ðk · pÞ2: ð28Þ

In addition, the vertex transformation properties under
charge conjugation determine the symmetry properties of
the Y functions:

Yiðk; pÞ ¼ Yiðp; kÞ; i ¼ 2; 6S; 7S; 8S; ð29Þ

Yiðk; pÞ ¼ −Yiðp; kÞ; i ¼ 1; 3; 4; 5; 6A; 7A; 8A; ð30Þ

where we conveniently introduce the decomposition

Yiðk; pÞ ¼ YS
i ðk; pÞ þ YA

i ðk; pÞ; ð31Þ

for i ¼ 6, 7, 8, where the superscripts S and A stand for the
symmetric and antisymmetric parts of the corresponding
Yi’s, under k ↔ p. Note that in Eqs. (20)–(27), there is no
contribution of YS

6 , Y
A
7 , and Y

S
8 . This is a consequence of the

properties (10) and (11), which entail

YS
6ðk; pÞ ¼ −

ðk2 − p2ÞY1ðk; pÞ
4∇ðk; pÞ ; ð32Þ

YA
7 ðk; pÞ ¼

q2Y1ðk; pÞ
4∇ðk; pÞ ; ð33Þ

YS
8ðk; pÞ ¼ −

q2Y2ðk; pÞ þ ðk2 − p2ÞY3ðk; pÞ
8∇ðk; pÞ : ð34Þ

It is also worth noting that the trivial choice Yiðk; pÞ ¼ 0
for all Y functions completely fixes the transverse vertex,
defined through Eqs. (7), (8), (21), and (27), in terms of the
fermion wave function renormalization, as reported in
Ref. [52]. However, we shall show that MR of the electron
propagator implies that these Y functions cannot all be
zero simultaneously.
We can invert relations (20)–(27) to write out the Y

functions in terms of τi:

Y 0
1ðk; pÞ ¼ −2∇ðk; pÞτ1ðk; pÞ; ð35Þ

Y 0
2ðk; pÞ ¼

1

2
ðk2 − p2Þ½bðk2; p2Þ − 2τ3ðk; pÞ�

þ t2τ6ðk; pÞ; ð36Þ

Y 0
3ðk;pÞ¼−

1

2
q2½bðk2;p2Þ−2τ3ðk;pÞ�

þ2∇ðk;pÞτ2ðk;pÞ−ðk2−p2Þτ6ðk;pÞ; ð37Þ

Y 0
4ðk; pÞ ¼

1

2
½cðk2; p2Þ þ τ5ðk; pÞ�

þ 1

4
½2ðk2 − p2Þτ4ðk; pÞ þ t2τ7ðk; pÞ�; ð38Þ

Y 0
5ðk;pÞ¼−

3

2
q2½bðk2;p2Þ−2τ3ðk;pÞ�

þ2∇ðk;pÞτ2ðk;pÞ−3ðk2−p2Þτ6ðk;pÞ; ð39Þ

Y 0
6
Aðk; pÞ ¼ −3½cðk2; p2Þ þ τ5ðk; pÞ�

−
1

2
½2ðk2 − p2Þτ4ðk; pÞ þ t2τ7ðk; pÞ�; ð40Þ

Y 0
7
Sðk; pÞ ¼ −½2q2τ4ðk; pÞ þ ðk2 − p2Þτ7ðk; pÞ�;

Y 0
8
Aðk; pÞ ¼ −

1

2
½bðk2; p2Þ þ τ8ðk; pÞ�: ð41Þ

Here, we have conveniently defined

Yiðk; pÞ ¼ ðk2 − p2ÞY 0
iðk; pÞ: ð42Þ

We expect the study in terms of Yiðk; pÞ to be numerically
amicable as the additional factor of (k2 − p2) in the
numerator eases out any kinematical singularities in the
limit k2 → p2.
So far, we have shown that the TTIs relate the transverse

vertex form factors to the fermion propagator and a
nonlocal tensor vertex, but nevertheless this is not enough
to elucidate the analytical behavior of the Y functions. It is
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insightful to analyze the asymptotic behavior of the vertex.
It has been shown that in the asymptotic limit, defined as
the perturbative expansion with p2 ≫ k2 ≫ m2

0, the leading
logarithmic term of the transverse vertex reads (in our
kinematical configuration) as [79]

ΓT
μ ðk; pÞ ¼p2≫k2 αξ

8πp2
log

�
k2

p2

�
Tasy
μ ; ð43Þ

where ξ is the gauge-fixing parameter, and

Tasy
μ ≡ T3 asy

μ ¼ T6 asy
μ ¼ p2γμ − pμγ · p: ð44Þ

On the other hand, from Eqs. (7), (8), (20)–(27), it is
straightforward to see that the leading structure of the
transverse vertex in the asymptotic limit acquires the
following form:

ΓT
μ ðk; pÞ ¼p2≫k2ðτ3 þ τ6ÞTasy

μ

¼ β

2p2
log

�
k2

p2

�
Tasy
μ

þ
�
2k · qY2 − k · tðY3 − Y5Þ

4ðk2 − p2Þ∇ðk; pÞ
�
Tasy
μ ; ð45Þ

where we have used the fact that the one-loop expansion
of the wave function renormalization yields Fðk2Þ ¼ 1þ
β logðk2=Λ2Þ, where β is a constant of orderOðαÞ: we shall
show in the next section that β ¼ αξ=ð4πÞ. Hence, the
leading logarithmic expansion for the asymptotic limit of
the vertex, Eq. (43), demands

2k · qY2ðk; pÞ ¼ k · tðY3ðk; pÞ − Y5ðk; pÞÞ; ð46Þ

which must be fulfilled at least to second order in its
perturbative expansion in powers of k2=p2, in order to
ensure the correct asymptotic limit of the transverse vertex.
Although the TTIs, and in particular the identities (16)

and (17), are potentially able to fix the transverse vertex,
the construction of an Ansatz for this vertex is far from
being complete since the Y functions remain unknown.
Additional requirements need to be implemented in order to
compute them. In this spirit, we shall use the argument of
MR for the fermion propagator, in the chirally symmetric
limit, in order to derive an integral constraint for these Y
functions. We shall also restrict the structure of the vertex
by implementing symmetry arguments and demanding a
gauge independent breaking of chiral symmetry. To this
end, we introduce the SDE for the fermion propagator in
the next section.

IV. GAP EQUATION

The SDE for the fermion propagator, also known as
the fermion gap equation, is diagrammatically represented
in Fig. 2.
Mathematically, the gap equation is written as

S−1ðkÞ¼S−10 ðkÞþ α

4π3

Z
E
d4pγνSðpÞΓμðk;pÞΔμνðqÞ; ð47Þ

where the subscript E indicates that the integral is per-
formed in the Euclidean space, α ¼ e2=4π is the electro-
magnetic coupling, and ΔμνðqÞ is the fully dressed photon
propagator. For an arbitrary covariant gauge, it is defined as

ΔμνðqÞ ¼ Δðq2Þ
�
δμν −

qμqν
q2

�
þ ξ

qμqν
q4

; ð48Þ

where Δðq2Þ is the photon propagator dressing function.
The subscript “0” in the first term of the right-hand side of
Eq. (47) denotes the tree level fermion propagator.
Recall from Eq. (5) that the fermion propagator is

defined by the wave function renormalization and the mass
function, so the gap equation, Eq. (47), can be decomposed
into two coupled, integral equations for M and F, which,
in an arbitrary gauge, are, respectively, written as

Mðk2Þ
Fðk2Þ ¼ m0 þ

αξ

4π3

Z
E

d4p
q4

Fðp2Þ
p2 þM2ðp2Þ

1

Fðk2Þ
× fMðp2Þq · k −Mðk2Þq · pg

þ α

4π3

Z
E
d4p

Fðp2Þ
p2 þM2ðp2ÞMðp2ÞGMðk; pÞ;

ð49Þ
1

Fðk2Þ ¼ 1 −
αξ

4π3

Z
E

d4p
q4

Fðp2Þ
p2 þM2ðp2Þ

1

Fðk2Þ

×

�
q · pþMðk2ÞMðp2Þ q · k

k2

�

þ α

4π3

Z
E

d4p
k2

Fðp2Þ
p2 þM2ðp2Þ uðk; pÞGFðk; pÞ;

ð50Þ

=
k k

− 1 − 1

q=k−p

S

k kp
S ΓνΓμS ΓνΓμ

Δμν

FIG. 2. Gap equation for the fermion propagator. The color-
filled blobs labeled with S, Δμν, and Γμ stand for the fully dressed
fermion and photon propagators and the three-point vertex,
respectively.
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where we have adopted the notation Fðk2Þ≡ Fðk2;Λ2Þ and
conveniently defined

uðk; pÞ≡ 3k · p − 2
∇ðk; pÞ

q2
: ð51Þ

The functions GF and GM in Eqs. (49) and (50) encode
the effective contribution of the fully dressed fermion-
photon vertex to the corresponding equations, and they are
defined as

ðk2 − p2Þ
Δðq2Þ GMðk; pÞ

¼ Y5ðk; pÞ þ
ΛMðp; kÞ
Mðp2Þ

þ
�
3k2 − uðk; pÞ þ ½uðk; pÞ − 3p2�Mðk2Þ

Mðp2Þ
�

1

Fðk2Þ ;

ð52Þ

ðk2 − p2Þ
Δðq2Þ uðk; pÞGFðk; pÞ

¼ −ΛNMðk; pÞ −Mðp2ÞΛMðk; pÞ
þ ðk2 − p2Þf−3k2p2bðk2; p2Þ þ uðk; pÞb̃ðk2; p2Þ
þMðp2Þðuðk; pÞ − 3k2Þcðk2; p2Þg; ð53Þ

where

b̃ðk2; p2Þ ¼ 1

k2 − p2

�
k2

Fðk2Þ −
p2

Fðp2Þ
�
: ð54Þ

Moreover, we have defined massive (ΛM) and nonmassive
(ΛNM) functions as

ΛMðk; pÞ ¼
1

2
Y1ðk; pÞ þ q · kYA

6 ðk; pÞ þ t · kYS
7ðk; pÞ;

ð55Þ

ΛNMðk; pÞ ¼
1

2
ðk2 − p2ÞY2ðk; pÞ þ

1

2
t2Y3ðk; pÞ

− k · pY5ðk; pÞ þ 4∇ðk; pÞYA
8 ðk; pÞ: ð56Þ

The reason for referring to ΛM and ΛNM as massive and
nonmassive functions, respectively, is the following: from
Eqs. (49) and (52) it is straightforward to see that in the
chiral limit, where m0 ¼ 0, a massless solution (M ¼ 0) is
trivially achieved if ΛM has the mass function as a global
factor, i.e., ΛM ∼M. On the other hand, the function ΛNM
does not follow this argument, and therefore it does not
have a dependence on M as a global factor. In the same
spirit, we shall refer to Y1, YA

6 , and Y
S
7 as massive functions

and Y2, Y3, Y5, and YA
8 as massless functions.

Note that the contribution of Y4 in Eqs. (49) and (50)
cancels out. This is an indication that the vertex cannot be
completely extracted solely from the fermion propagator
SDE. Nonetheless, Y4 can be modeled by relying on
additional information, e.g., the expected anomalous
electromagnetic moment for the corresponding fermion.

A. Quenched QED

The system of Eqs. (49) and (50) has long been studied
using different models for the photon propagator; see
Ref. [102] and references therein. For the sake of sim-
plicity, we limit this work to the well-known quenched
approximation (qQED), where fermion loop contributions
to the photon SDE are neglected and the coupling does not
run, which in turn yields

Δðq2Þ≡ Δ0ðq2Þ ¼ 1=q2: ð57Þ

As we mentioned before, one of the goals of the present
article is to study the impact of the transverse vertex on the
DCSB and vice versa. In particular, we shall investigate the
constraints imposed by demanding a gauge independent
DCSB in Sec. VII. For this purpose, from now on, we focus
our attention on the chiral limit (m0 ¼ 0) since this is the
most insightful scenario to elucidate how QED undergoes
a phase transition from perturbative to nonperturbative
dynamics as we increase the electromagnetic coupling (α)
up to the critical value (αc) where DCSB is triggered.
For α < αc the only possible solution to Eq. (49) in the
chiral limit is Mðk2Þ ¼ 0, but as α → αc a second nonzero
solution bifurcates away from the trivial one. The theo-
retical prediction for the critical coupling above which
DCSB takes place can be extracted from Eq. (49) through
implementing bifurcation analysis.
In the vicinity of the critical coupling α ∼ αc, the

dynamically generated fermion mass is rather small in
comparison with any other mass scale. Therefore, quadratic
and higher terms in the mass function can formally be
neglected. In this case, Eq. (50) for F and consequently its
solution reduce to that of a massless theory. Thus, the
survey of the renormalization properties of the fermion
propagator in massless QED, and the corresponding
implications on the fermion-photon vertex, is mandatory.
In the next section we show that for a massless fermion

in quenched QED, the wave function renormalization
possesses a power law behavior, which is multiplicatively
renormalizable. We also derive a nonperturbative constraint
on the nonmassive Y functions that ensures a MR solution
for F.

V. MR CONSTRAINTS

It is well known that in QED the gap equation (47) leads
to a fermion propagator that is logarithmically divergent.
However, we can define renormalized propagators by
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absorbing these divergences into the renormalization
constants Zi. For massless QED, this multiplicative
renormalization is accomplished by introducing renormal-
ized fields, fermion field ψR ¼ Z−1=2

2 ψ , photon field

AR
μ ¼ Z−1=2

3 Aμ, and also renormalized coupling eR ¼
Z2Z

1=2
3 e=Z1. Thus, the MR of the fermion propagator

requires renormalized FR to be related to unrenormalized
F through

FRðk2; μ2Þ ¼ Z−1
2 ðμ2;Λ2ÞFðk2;Λ2Þ; ð58Þ

where μ plays the role of an arbitrary renormalization scale.
In order to solve Eq. (58), the functions involved are
expanded as perturbative series containing terms of the
form αn lnn (called leading logarithmic terms). This is
known as the LLA. In the LLA, we then have

Fðk2;Λ2Þ ¼ 1þ
X∞
n¼1

αnAnlnn
�
k2

Λ2

�
; ð59Þ

Z−1
2 ðμ2;Λ2Þ ¼ 1þ

X∞
n¼1

αnBnlnn
�
μ2

Λ2

�
; ð60Þ

FRðk2; μ2Þ ¼ 1þ
X∞
n¼1

αnCnlnn
�
k2

μ2

�
; ð61Þ

where An, Bn, and Cn are unknown coefficients but can
be calculated in perturbation theory to any desired order.
However, MR condition (58) restricts the coefficients to be
interrelated as follows:

An ¼ Cn ¼ ð−1ÞnBn ¼
An
1

n!
; ð62Þ

so that the functions F, FR, and Z2 obey a power law
behavior. Then, the all orders solution of (59) for F can be
summed up as follows:

Fðk2;Λ2Þ ¼
�
k2

Λ2

�
β

; ð63Þ

where we define β ¼ αA1. This is the LLA. Beyond it, β
would have terms of Oðα2Þ. Naturally, perturbation theory
allows us to evaluate the anomalous dimension β at
different orders of approximation.
The one-loop contribution to the fermion propagator can

be evaluated by taking the tree level expressions for SðpÞ,
Γμðk; pÞ, and ΔμνðqÞ on the right-hand side of Eq. (47).
In the massless limit, M ¼ 0 and the resulting expression
for F is

1

Fðk2;Λ2Þ ¼ 1þ αξ

4π3

Z
E

d4p
p2

½p2 − k · p�
q4

−
α

4π3

Z
E

d4p
p2

½2∇ðk; pÞ − 3q2ðk · pÞ�
k2q4

: ð64Þ

Angular integration of Eq. (64) leads to

1

Fðk2;Λ2Þ ¼ 1þ αξ

4π

Z
Λ2

k2

dp2

p2
: ð65Þ

Carrying out radial integration in Eq. (65) yields

Fðk2;Λ2Þ ¼ 1þ αξ

4π
log

�
k2

Λ2

�
: ð66Þ

Comparing expression (66) with the perturbative expansion
(59) to one-loop order, we see that A1 ¼ ξ=4π. Therefore,
perturbation theory fixes theOðαÞ anomalous dimension in
Eq. (63) to be

β ¼ αξ

4π
: ð67Þ

The power law behavior of F in Eq. (63), with β given in
Eq. (67), is the solution of

1

Fðk2;Λ2Þ ¼ 1þ αξ

4π

Z
Λ2

k2

dp2

p2

Fðp2;Λ2Þ
Fðk2;Λ2Þ : ð68Þ

Note that Eq. (68) is nonperturbative in nature and serves as
a requirement of MR for the wave function renormalization
F: any Ansatz for the three-point vertex must guarantee that
the wave function renormalization F in Eq. (47) satisfies
Eq. (68). We shall now proceed to show how the require-
ment of MR for the fermion propagator, embodied in
Eq. (68), constrains the massless Y functions.
In the massless limit, Eq. (50) reduces to

1

Fðk2Þ ¼ 1þ αξ

4π3

Z
E

d4p
p2

Fðp2Þ
Fðk2Þ

½p2 − k · p�
q4

−
α

4π3
1

k2

Z
E

d4p
p2

Fðp2ÞΔðq2Þ
k2 − p2

fΛNMðk; pÞ

þ ðk2 − p2Þ½3k2p2bðk2; p2Þ − b̃ðk2; p2Þuðk; pÞ�g:
ð69Þ

Angular integration of the last term on the right-hand side
of the above Eq. (69) vanishes in qQED, since

Z
π

0

dφ sin2φ
uðk; pÞ
q2

¼ 0; ð70Þ

where φ is the angle between k and p. Bearing in mind
the latter result, Eq. (70)), it is straightforward to see from
Eq. (69) that if we set, quite generally,
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ΛNMðk; pÞ ¼ ðp2 − k2Þ
× ½T ðk2; p2Þuðk; pÞ þ 3k2p2bðk2; p2Þ�;

ð71Þ

T being an a priori arbitrary, dimensionless function of k2

and p2 alone, then Eq. (68) is trivially fulfilled in qQED;
i.e., a multiplicatively renormalizable solution for Fðk2Þ is
ensured.
Symmetry properties of the Y functions, Eqs. (29) and

(30), restrict T ðk2; p2Þ in Eq. (71) to be fully symmetric
under k2 ↔ p2. Furthermore, in order to ensure that in
perturbation theory the transverse form factors start at
OðαÞ, the perturbative expansion for T is required to begin
at the same order.
The above expression for ΛNMðk; pÞ, Eq. (71), provides

a nonperturbative Ansatz for the corresponding linear
combination of the massless Y functions; see Eq. (56).
Although Eq. (71) does not fix the Y functions individually,
we shall show in Sec. VII that it suffices (along with
additional constraints on the remaining, relevant Y func-
tions) to investigate DCSB in the fermion propagator.
Moreover, in Eq. (71), we assume that the q2 dependence
of the Y functions involved is effectively incorporated by
means of the function uðk; pÞ. However, more realistic
Ansätze are expected to possess a more complex q2

dependence.
For an arbitrary q2 dependence of ΛNMðk; pÞ, it seems

impossible to proceed any further in integrating Eq. (69)
because of the unknown dependence of the Y functions
on the angle φ. To circumvent this problem, we shall work
with effective functions, denoted as Yiðk2; p2Þ, whose
relation with the real ones, Yiðk; pÞ, is defined exactly
in analogy with [84,105] as follows:

Y2ðk2; p2Þ ¼ 1

f2ðk2; p2Þ
Z

π

0

dφ sin2φ
Y2ðk; pÞ

q2
; ð72Þ

Y3ðk2; p2Þ ¼ 1

f3ðk2; p2Þ
Z

π

0

dφ sin2φ
t2Y3ðk; pÞ

q2
; ð73Þ

Y5ðk2; p2Þ ¼ 1

f5ðk2; p2Þ
Z

π

0

dφ sin2φ
ðk · pÞY5ðk; pÞ

q2
;

ð74Þ

YA
8 ðk2; p2Þ ¼ 1

f8ðk2; p2Þ
Z

π

0

dφ sin2φ
∇ðk; pÞYA

8 ðk; pÞ
q2

;

ð75Þ

where we have defined

f2ðk2; p2Þ ¼
Z

π

0

dφ sin2φ
1

q2

¼ π

2

�
1

p2
θðp2 − k2Þ þ 1

k2
θðk2 − p2Þ

�
; ð76Þ

f3ðk2; p2Þ ¼
Z

π

0

dφ sin2φ
t2

q2

¼ π

2

��
1þ 2

k2

p2

�
θðp2 − k2Þ

þ
�
1þ 2

p2

k2

�
θðk2 − p2Þ

�
; ð77Þ

f5ðk2; p2Þ ¼
Z

π

0

dφsin2φ
ðk · pÞ
q2

¼ π

4

�
k2

p2
θðp2 − k2Þ þ p2

k2
θðk2 − p2Þ

�
; ð78Þ

f8ðk2; p2Þ ¼
Z

π

0

dφ sin2φ
∇ðk; pÞ

q2

¼ −
π

8

�
k2

p2
ðk2 − 3p2Þθðp2 − k2Þ

þ p2

k2
ðp2 − 3k2Þθðk2 − p2Þ

�
; ð79Þ

where θ is the usual step function:

θðx − yÞ ¼
�
1 for x ≥ y;

0 for x < y:
ð80Þ

Using aforementioned effective functions, angular integra-
tion of Eq. (69) in qQED leads to

1

Fðk2Þ ¼ 1þ αξ

4π

Z
Λ2

k2

dp2

p2

Fðp2Þ
Fðk2Þ

−
α

4π

Z
k2

0

dp2

k2
Fðp2Þ

�
3p2bðk2; p2Þ

þ 1

2k2
Y2ðk2; p2Þ þ 1

2

Y3ðk2; p2Þ
k2 − p2

�
1þ 2

p2

k2

�

−
p2

2k2
Y5ðk2; p2Þ
k2 − p2

− p2
YA
8 ðk2; p2Þ
k2 − p2

�
p2

k2
− 3

��

−
α

4π

Z
Λ2

k2

dp2

k2
Fðp2Þ

�
3k2bðk2; p2Þ

þ 1

2p2
Y2ðk2; p2Þ þ 1

2

Y3ðk2; p2Þ
k2 − p2

�
1þ 2

k2

p2

�

−
k2

2p2

Y5ðk2; p2Þ
k2 − p2

− k2
YA
8 ðk2; p2Þ
k2 − p2

�
k2

p2
− 3

��
:

ð81Þ
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In order to ensure MR of the fermion propagator, we
demand Fðk2Þ on the left-hand side of Eq. (81) to satisfy
Eq. (68); this imposes the following restriction:

Z
k2

0

dp2

k2
Fðp2Þ

�
3p2bðk2; p2Þ

þ 1

2k2
Y2ðk2; p2Þ þ 1

2

Y3ðk2; p2Þ
k2 − p2

�
1þ 2

p2

k2

�

−
p2

2k2
Y5ðk2; p2Þ
k2 − p2

− p2
YA
8 ðk2; p2Þ
k2 − p2

�
p2

k2
− 3

��

þ
Z

Λ2

k2

dp2

k2
Fðp2Þ

�
3k2bðk2; p2Þ

þ 1

2p2
Y2ðk2; p2Þ þ 1

2

Y3ðk2; p2Þ
k2 − p2

�
1þ 2

k2

p2

�

−
k2

2p2

Y5ðk2; p2Þ
k2 − p2

− k2
YA
8 ðk2; p2Þ
k2 − p2

�
k2

p2
− 3

��
¼ 0:

ð82Þ

This requirement encodes the fact that all divergences have
already been absorbed in the MR solution for the wave
function renormalization F. As a consequence, there is no
necessity of regularizing Eq. (82), and we can takeΛ2 → ∞
in the integration limit. It is convenient to introduce a
dimensionless variable x, defined as

x ¼ p2

k2
∀ p2 ∈ ½0; k2�; ð83Þ

x ¼ k2

p2
∀ p2 ∈ ½k2;∞�; ð84Þ

so that Eq. (82) is now expressed as

Z
1

0

dxWðxÞ ¼ 0; ð85Þ

with

WðxÞ ¼ 6
rðxÞ
x − 1

þ ðxβ þ x−2Þ½h1ðxÞ þ h2ðxÞ�; ð86Þ

where we have defined the function

rðxÞ ¼ xð1 − xβÞ − x−1ð1 − x−βÞ: ð87Þ

The presence of the anomalous dimension β as an exponent
in Eqs. (86) and (87) is related to the terms Fðk2Þ=Fðp2Þ
in (82), which can be expressed as ðk2=p2Þβ in light of
Eq. (63). Furthermore, in Eq. (86), we have defined

h1ðxÞ ¼
Fðk2Þ
x − 1

1

k2
H1ðk2; xk2Þ; ð88Þ

h2ðxÞ ¼
Fðk2Þ
x − 1

x
k2

H2ðk2; xk2Þ: ð89Þ

These are dimensionless functions, satisfying the properties

h1ðx−1Þ ¼ xβ−1h1ðxÞ; ð90Þ

h2ðx−1Þ ¼ xβ−2h2ðxÞ: ð91Þ

Moreover, in Eqs. (88) and (89), we have conveniently
defined scalar functions

H1ðk2; p2Þ ¼
�
p2

k2
− 1

�
Y2ðk2; p2Þ −

�
p2

k2
þ 1

�
Y3ðk2; p2Þ

− 8p2YA
8 ðk2; p2Þ; ð92Þ

H2ðk2; p2Þ ¼ −Y3ðk2; p2Þ þ Y5ðk2; p2Þ
þ 2ðk2 þ p2ÞYA

8 ðk2; p2Þ: ð93Þ

Employing x ¼ p2=k2 in Eq. (86), and using definitions
(88), (89), (92), and (93), we have (for k2 > p2)

W

�
p2

k2

�
¼ Sðk2; p2Þ

p2 − k2

��
1 −

k2

p2

�
Y2ðk2; p2Þ

−
�
2þ k2

p2

�
Y3ðk2; p2Þ þ Y5ðk2; p2Þ

þ 2ðp2 − 3k2ÞYA
8 ðk2; p2Þ

�
þ 6k2

rðp2=k2Þ
p2 − k2

;

ð94Þ

where we have defined

Sðk2; p2Þ ¼ Fðk2Þ k
2

p2
þ Fðp2Þp

2

k2
; ð95Þ

which enters the definition of rðp2=k2Þ through

r

�
p2

k2

�
¼ Sðk2; p2Þ

�
1

Fðp2Þ −
1

Fðk2Þ
�
: ð96Þ

Equations (85)–(96) constitute nonperturbative constraints
on the fermion-photon vertex: for every Ansatz for the Y
functions, the resulting functionW is restricted to guarantee
the integral constraint (85), so that the MR of the fermion
propagator is ensured. To bring out the applicability and
scope of the integral constraint on the massless Y functions,
Eq. (85), we now proceed to analyze an existing, rather
general transverse vertex Ansatz, which was constructed in
qQED to implement the requirement of MR for a massless
fermion propagator in addition to all other key features of
QED mentioned before [26]. Different choices of the free
parameters defining this Ansatz correspond to numerous
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vertices constructed in the past. We will make reference to
all these constructions along the way.

VI. EXAMPLES

The Bashir-Bermudez-Chang-Roberts (BBCR) vertex,
Ref. [13], is an Ansatz for the dressed fermion-photon
vertex in QED, whose construction is constrained primarily
by two requirements: to provide MR of the fermion pro-
pagator and to produce gauge independent critical coupling
for DCSB. As it involves projecting the vertex onto the gap
equation, it is natural that it is expressed only in terms of the
functions which appear in the full fermion propagator,
namely Fðk2Þ and Mðk2Þ. Moreover, its simplicity lies in
the fact that its functional dependence on these entities is
solely through the forms which enter the longitudinal
vertex, namely, bðk2; p2Þ and cðk2; p2Þ. In our kinematical
configuration and notation, the transverse form factors for
the BBCR vertex read as

τ1ðk2; p2Þ ¼ a1
ðk2 þ p2Þ cðk

2; p2Þ; ð97Þ

τ2ðk2; p2Þ ¼ a2
ðk2 þ p2Þ bðk

2; p2Þ; ð98Þ

τ3ðk2; p2Þ ¼ a3bðk2; p2Þ; ð99Þ

τ4ðk2; p2Þ ¼ a4ðk2 − p2Þ
4k2p2

cðk2; p2Þ; ð100Þ

τ5ðk2; p2Þ ¼ −a5cðk2; p2Þ; ð101Þ

τ6ðk2; p2Þ ¼ −
a6ðk2 þ p2Þ
ðk2 − p2Þ bðk2; p2Þ; ð102Þ

τ7ðk2; p2Þ ¼ −
�
a4q2

2k2p2
þ a7
k2 þ p2

�
cðk2; p2Þ; ð103Þ

τ8ðk2; p2Þ ¼ a8 bðk2; p2Þ; ð104Þ

where the coefficients ai are constants. We will consider
this example in detail because different choices of ai
correspond to several vertices proposed in the literature
(see Ref. [74]), e.g., the Ball-Chiu vertex [44], the Curtis-
Pennington vertex [78], and the Qin-Chang vertex [52].
From Eqs. (35)–(41) and (97)–(104), we see that the

corresponding Y functions for the BBCR vertex read as

Y 0
1ðk; pÞ ¼ −2a1cðk2; p2Þ∇ðk; pÞ

k2 þ p2
; ð105Þ

Y 0
2ðk; pÞ ¼ −bðk2; p2Þ

×

�
ðk2 − p2Þ

�
a3 −

1

2

�
þ a6

�
k2 þ p2

k2 − p2

�
t2
�
;

ð106Þ

Y 0
3ðk; pÞ ¼ bðk2; p2Þ

×

�
q2
�
a3 −

1

2

�
þ 2a2

∇ðk; pÞ
k2 þ p2

þ a6ðk2 þ p2Þ
�
;

ð107Þ

Y 0
4ðk; pÞ ¼ −

1

2
cðk2; p2Þ

×

�
a4

∇ðk; pÞ
k2p2

þ ða5 − 1Þ þ a7
2

t2

k2 þ p2

�
;

ð108Þ

Y 0
5ðk;pÞ ¼ 3bðk2; p2Þ

×

�
q2
�
a3 −

1

2

�
þ 2

3
a2

∇ðk;pÞ
k2 þp2

þ a6ðk2 þp2Þ
�
;

ð109Þ

Y 0
6
Aðk; pÞ ¼ cðk2; p2Þ

×

�
a4

∇ðk; pÞ
k2p2

þ 3ða5 − 1Þ þ a7
2

t2

k2 þ p2

�
;

ð110Þ

Y 0
7
Sðk; pÞ ¼ a7 cðk2; p2Þ k

2 − p2

k2 þ p2
; ð111Þ

Y 0
8
Aðk; pÞ ¼ −

1

2
bðk2; p2Þða8 þ 1Þ: ð112Þ

It is mathematically straightforward to show that the
asymptotic expansion of Eqs. (106), (107), and (109) in
powers of k2=p2, for p2 ≫ k2 ≫ m2

0, fulfills the perturba-
tion theory requirement (46) up to second order if [13]

a3 þ a6 ¼
1

2
: ð113Þ

In order to verify that if, for the massless case, the BBCR
vertex satisfies the integral constraint for W, Eq. (85), it is
necessary to compute the corresponding massless effective
Y functions by means of Eqs. (72)–(75), which in turn yield

Y2ðk2; p2Þ ¼ bðk2; p2Þ
× fð1=2 − a3Þðk2 − p2Þ2
− a6ðk2 þ p2Þðk2 þ 2p2Þg; ð114Þ

Y3ðk2; p2Þ ¼ 1

2

k4 − p4

k2 þ 2p2
bðk2; p2Þ

× fð2a3 þ 2a6 − 1Þk2 − ða2 − 4a6Þp2

þ a2p2ðð4k4 þ 6k2p2 − p4Þ=ððk2 þ p2Þ2ÞÞg;
ð115Þ
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Y5ðk2; p2Þ ¼ k2 − p2

k2 þ p2
bðk2; p2Þ

× f3a6ðk2 þ p2Þ2 þ a2p2ðk2 − p2=2Þg;
ð116Þ

YA
8 ðk2; p2Þ ¼ −

1

2
ða8 þ 1Þðk2 − p2Þbðk2; p2Þ: ð117Þ

Using Eqs. (114)–(117) in the expression for Wðp2=k2Þ,
Eq. (94), we find

WðxÞ ¼ −2ða2 þ 2a3 − 2a8Þ
rðxÞ
1 − x

þ 1

2
½−3ð1 − 2a6Þ þ ða2 þ 2a3 − 2a8Þ�

×

�
1þ x
1 − x

�
rðxÞ: ð118Þ

If we insert the above expression forWðxÞ, Eq. (118), in its
corresponding integral restriction, Eq. (85), we find that
the integral vanishes if and only if the following two
conditions are met:

a2 þ 2a3 − 2a8 ¼ 0; ð119Þ

a6 ¼ 1=2; ð120Þ

which are the constraints reported in [13] for the coef-
ficients ai in order to ensure the MR of the fermion
propagator.
As a counterexample, we could take all Y functions equal

to zero. If we do so, the resulting function WðxÞ reads as

WðxÞ ¼ −6
rðxÞ
1 − x

; ð121Þ

which does not satisfy the integral constraint (85).
Therefore, setting all Y functions equal to zero does not
ensure the MR of the fermion propagator.
Throughout Secs. V and VI, we have investigated the

MR solution for the massless fermion propagator in qQED,
within the LLA, and derived a consequent nonperturbative,
integral constraint for the massless Y functions. In the next
section, we study DCSB and implement the argument of a
gauge independent critical coupling to impose further
constraints on the transverse vertex.

VII. GAUGE INDEPENDENT DCSB

In order to study DCSB through the gap equation by
employing a fully dressed fermion-photon vertex, Eqs. (2)–
(4), (7), (8), and (20)–(27), we propose an Ansatz for the
functions Yi appearing in Eqs. (49)–(56). Naturally, we
look for the simplest construction which incorporates

all the key constraints we have enlisted and studied so
far. This can be achieved by requiring the following:
(1) The massive Y functions in the gap equation are

expressed solely in terms of the fermion dressing
functions, F and M.

(2) The antisymmetric contribution of GMðk; pÞ and
GFðk; pÞ vanishes under k ↔ p.

(3) The functions GM and GF are the same (up to a
constant factor).

These simplifying requirements do not jeopardize the MR
of the fermion propagator which can still be ensured in
massless qQED.
Assumptions (1) and (2) are fulfilled if we choose

Y1ðk; pÞ ¼ −4
∇ðk; pÞðk2 − p2ÞÞ

q2
cðk2; p2Þ; ð122Þ

YA
6 ðk; pÞ ¼ −3ðk2 − p2Þcðk2; p2Þ; ð123Þ

YS
7ðk; pÞ ¼ 0: ð124Þ

Moreover, we can implement the simplifying requirement
(3) by demanding the MR condition on the massless
functions, Eq. (71), and fixing Y5 as follows:

Y5ðk; pÞ ¼ ðk2 − p2Þ½3T ðk2; p2Þ þ uðk; pÞbðk2; p2Þ�:
ð125Þ

In fact, the Ansatz for the Y functions, constituted through
Eqs. (71) and (122)–(125), yields

1

3
GMðk; pÞ ¼ GFðk; pÞ ¼ Δðq2Þ½T ðk2; p2Þ þ b̃ðk2; p2Þ�

≡Gðk; pÞ; ð126Þ

which fulfills assumption (2) in addition to (3). Moreover,
for the massless limit in qQED, it simplifies Eq. (50) as

1

Fðk2Þ ¼ 1 −
αξ

4π3

Z
E

d4p
p2

Fðp2Þ
Fðk2Þ

q · p
q4

: ð127Þ

After angular integration, F satisfies Eq. (68) as expected;
i.e., it has the power law behavior of Eq. (63) as constrained
by MR, with the anomalous dimension β given in Eq. (67).
Let us summarize below the important characteristics of

the function T :
(i) It must be a dimensionless function of k2 and p2.

We assume it to be q2 independent in order to ensure
the MR of Fðk2Þ.

(ii) It must be fully symmetric under k2 ↔ p2.
(iii) Its perturbative expansion must start at OðαÞ.
(iv) It must vanish in the Landau gauge, ξ ¼ 0.

Recall from Sec. V that condition (i) is required to ensure a
MR solution for the massless fermion propagator in qQED,

ALBINO, BASHIR, GUERRERO, BENNICH, and ROJAS PHYS. REV. D 100, 054028 (2019)

054028-12



while the conditions (ii) and (iii) follow from the symmetry
properties of the vertex and its perturbative expansion,
respectively. The additional condition (iv) is imposed in
order to facilitate the extraction of an ξ-independent critical
coupling, and an anomalous dimension for the mass
function which, at criticality, is independent of the choice
of the vertex, as we shall discuss now.
In the vicinity of the critical coupling, αc, above which

chiral symmetry is broken dynamically, the generated
fermion mass is negligible in comparison with any other
mass scale. Hence, for α ∼ αc, we can formally neglect
quadratic and higher powers (if any) of the mass function in
Eq. (49). In the limit m0 ¼ 0, it reduces to

Mðk2Þ
Fðk2Þ ¼ αξ

4π3

Z
E

d4p
p2

Fðp2Þ
Fðk2Þ

1

q4

× fMðp2Þq · k −Mðk2Þq · pg

þ 3α

4π3

Z
E

d4p
p2

Fðp2ÞMðp2ÞGðk; pÞ; ð128Þ

where our Ansatz for the Y functions, Eqs. (71) and (122)–
(125), has been implicitly embedded through the function
Gðk; pÞ, defined in Eq. (126). Moreover, neglecting terms
quadratic inM, the equation for F, Eq. (50), reduces to that
of a massless theory and decouples from that of the mass
function M. In the quenched approximation, it yields
Eq. (127). Therefore, from Eqs. (127) and (128) we see that
in the vicinity of the critical coupling, in qQED, the mass
function satisfies the following equation:

Mðk2Þ ¼ αξ

4π3

Z
E

d4p
p2

Fðp2Þ
Fðk2ÞMðp2Þ q · k

q4

þ 3α

4π3

Z
E

d4p
p2

Fðp2ÞMðp2ÞGðk; pÞ: ð129Þ

In the neighborhood of αc, MR forces a power law behavior
for the mass function which must hold at all momenta,

Mðk2Þ ¼ BΛðk2Þ−s; ð130Þ

where BΛ is a constant (that depends on Λ) and the
exponent s ¼ 1 − γm=2 is defined in terms of the anoma-
lous dimension of the mass function, γm. We assume
0 < s ≤ 1 to comply with perturbation theory.
Bardeen et al. demonstrated that, at α ¼ αc, the mass

anomalous dimension is γm ¼ 1 [106,107]. Some further
analyses, based on the Cornwall-Jackiw-Tomboulis effec-
tive potential technique, tend to argue that, at criticality,
this value holds true regardless of the choice of the vertex
[108–110]. In Ref. [82], this value is quite close to unity,
though not exactly equal to it. Setting γm ¼ 1 results in the
four-fermion interaction operator ðψ̄ψÞ2 acquiring dynami-
cal dimension d ¼ 2ð3 − γmÞ ¼ 4 in contrast to its canoni-
cal dimension d ¼ 6. Therefore, four-fermion interaction

becomes marginal. It must then be included in order to
render nonperturbative QED a self-consistent, closed
theory [108,111]. Depending upon the nonperturbative
details of the fermion-photon interaction, it is plausible
to have γm > 1, implying d < 4, which would modify the
status of the four-point operators from marginal to relevant;
see, e.g., the review article [25] and references therein.
At α ¼ αc, the anomalous dimension γm ¼ 1 and its

corresponding critical value sc ¼ 1=2 can be obtained by
constraining the fermion-photon vertex, a line of action that
is followed in [83,108]. In our analysis, this critical value
is readily derived from Eq. (128) in Landau gauge, ξ ¼ 0,
if we demand T ðk2; p2Þ to fulfill condition (iv): from
Eq. (127) we see that in the Landau gauge Fðk2Þ ¼ 1, and
therefore Eq. (129) reduces to

Mðk2Þ ¼ 3α

4π3

Z
E

d4p
p2

Mðp2Þ
q2

: ð131Þ

For the MR solution of the mass function, Eq. (130), the
above Eq. (131) results in

s ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α

αc

r
; ð132Þ

where αc stands for the critical coupling, which signals the
point where the two possible solutions for s match each
other, and a nontrivial solution for the mass function1

bifurcates away from the perturbative one (M ¼ 0): for
α > αc, the solution for the mass function enters the
complex plane indicating that DCSB has taken place. In
this case, the critical coupling is

αc ¼
π

3
; ð133Þ

thus revealing a Miransky scaling law for the interaction
strength α [113–115], which has been derived using a
bare vertex [116,117]. For α ¼ αc ¼ π=3 in Eq. (132), the
expected critical value for the anomalous mass dimension
is obtained, i.e.,

sc ¼
1

2
: ð134Þ

Since the critical coupling pinpoints a phase transition
from perturbative to nonperturbative dynamics, it is poten-
tially a physical observable, and hence it is expected to be
independent of the gauge parameter. Thus, Eq. (131), and
its corresponding MR solution, Eq. (130), must hold in

1In addition to positive-definite solutions for the mass function
(and their corresponding mirrors), an arbitrary vertex may
produce spurious oscillatory solutions for M. However, it has
been argued that a realistic vertex might only produce mono-
tonically decreasing and increasing nontrivial solutions [112].
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all gauges. Therefore, from Eqs. (129) and (131), we see
that in order for αc and sc to be ξ independent, the mass
function and the vertex must satisfy the following equation
in qQED:

Z
E

d4p
p2

Mðp2ÞFðp2Þ
q2

×

�
ξq · k

3q2Fðk2Þ þ T ðk2; p2Þ þ k2bðk2; p2Þ
�

¼ 0: ð135Þ

After performing angular integration, and introducing the
dimensionless variables defined in Eqs. (83) and (84), the
above Eq. (135) can be cast in the following form:

Z
1

0

dxffiffiffi
x

p VðxÞ ¼ 0; ð136Þ

with

VðxÞ ¼ ξ

3
xβ−sþ½ þ ½xβ−sþ½ þ xs−½�gðxÞ

þ
�
xβ − 1

1 − x

�
x−sþ½ −

�
x−β − 1

1 − x

�
xsþ½; ð137Þ

where s and β, defined in Eqs. (67) and (134), appear in the
light of the MR solutions for F andM, Eqs. (63) and (130),
respectively. Furthermore, in Eq. (137) we have defined

gðxÞ ¼ Fðk2ÞT ðk2; xk2Þ; ð138Þ

which is independent of k2 and satisfies the following
property:

gðx−1Þ ¼ xβgðxÞ: ð139Þ
It is important to stress the fact that Eq. (136) stands for a

nonperturbative constraint on the vertex: any Ansatz for
T ðk2; p2Þ must provide a function V that should satisfy
Eq. (136). Conversely, from a particular solution for V in
the latter equation, one can derive the corresponding
function T by means of Eq. (137). However, there exists
an infinite number of solutions for VðxÞ satisfying
Eq. (136). In addition, such a solution for V must also
satisfy [cf. Eq. (137)]

VðxÞ − Vðx−1Þ ¼ ξ

3
ðxβ−sþ½ − x−βþs−½Þ: ð140Þ

A simple choice satisfying Eqs. (136) and (140) at
criticality reads

VðxÞ ¼ ξ

3

�
xβ þ 1 − 2β

8β2
ð2 − xβ − x−βÞ

�
; ð141Þ

valid for −½ ≤ β ≤ ½ but β ≠ 0. In the Landau gauge,
Eqs. (136) and (140) are satisfied with the trivial solution

VðxÞξ¼0 ¼ 0: ð142Þ

It is worth reminding the reader that Eq. (136), and
consequently Eqs. (137) and (140), are rigorously valid
only at criticality. Therefore, for αc ¼ π=3 and sc ¼ 1=2,
the resulting function T ðk2; p2Þ, derived from Eqs. (137)
and (141), reads (for x ¼ p2=k2 and −6 ≤ ξ ≤ 6, but
ξ ≠ 0) as

T ðk2; p2Þ ¼ −
1

2
ðk2 þp2Þbðk2;p2Þ

þ ð12− ξÞ
2ξ

�
Fðk2Þ−Fðp2Þ
Fðk2Þ þFðp2Þ

��
1

Fðk2Þ−
1

Fðp2Þ
�
;

ð143Þ

whereas Eqs. (137) and (142) yield (for Landau gauge)

T ðk2; p2Þξ¼0 ¼ −
1

2
ðk2 þ p2Þbðk2; p2Þ: ð144Þ

The above expressions for T fulfill conditions (i)–(iv), as
expected, but a few observations must be made: (a) MR
of the wave function renormalization entails Fðp2;Λ2Þ=
Fðk2;Λ2Þ ¼ Fðp2; μ2Þ=Fðk2; μ2Þ for some renormalization
scale, μ2, ensuring the Λ2 independence of the second term
on the right-hand side of Eq. (143); and (b) although F ¼ 1
for ξ ¼ 0 (in the LLA of qQED), leading to T ξ¼0 ¼ 0,
the function T ξ¼0ðk2; p2Þ defined in Eq. (144) does not
necessarily vanish in the Landau gauge beyond the LLA
and the quenched approximation.
Numerical evaluation of the ratio between the Euclidean

mass mE, defined as mE ¼ Mðm2
EÞ, and the ultraviolet

cutoff Λ is shown in Fig. 3 for different gauges implement-
ing the Ansätze introduced in Eqs. (143) and (144). In the
plot, points with α < 1.25 (highlighted as filled markers)
are fitted to the Miransky scaling law [113–117]

FIG. 3. Ratio of the Euclidean mass and the ultraviolet cutoff
in different gauges. αc ¼ π=3 within the numerical accuracy of
our computation.
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mE

Λ
¼ exp

2
64− πκffiffiffiffiffiffiffiffiffiffiffiffi

α
αc
− 1

q þ ϕ

3
75: ð145Þ

Each fit yields the critical coupling αc ¼ π=3 with a
numerical error of less than 1% for ξ ¼ 1; 0;−1;−2 (and
∼2.8% for ξ ¼ −3) as indicated in the second column of
Table I It is worth reminding the reader that our Ansatz
reveals αc ¼ π=3, just as the bare vertex in the Landau
gauge. However, the bare vertex leads to a highly gauge
dependent αc, including no chiral symmetry breaking
for ξ ¼ −3. In our case, chiral symmetry is broken in
every gauge with the same critical coupling. The result for
ξ ¼ −3 particularly emphasizes this point.
It is well known that DCSB manifests itself in the three-

point vertex through its massive form factors [118,119],
and thus a physically meaningful Ansatz for T ðk2; p2Þ
should incorporate the mass function. In the present work,
we propose a simple, numerically tractable Ansatz for ξ ¼ 0,

T ðk2; p2Þξ¼0 ¼ −
1

2
ðk2 þ p2Þbðk2; p2Þ

þ ρ

�
Mðk2Þ
Fðk2Þ þMðp2Þ

Fðp2Þ
�
cðk2; p2Þ; ð146Þ

which is an extension of Eq. (144), with a mass term
weighted by a real constant ρ. The fact that the last term of
Eq. (146) contains quadratic powers in M ensures that this
contribution can be neglected at criticality, which in turn
yields a gauge independent critical coupling. In addition,
characteristics (i)–(iv) remain preserved.
The numerical evaluation of mE=Λ using Eq. (146) is

shown in Fig. 4 for different values of ρ. Again, points
with α < 1.25 are fitted to Eq. (145), indicating a critical
coupling independent of the ρ parameter and equal to π=3,
within a margin of error smaller than 1%.
Numerical results for the Euclidean mass plotted in

Figs. 3 and 4 support the argument that any function
T ðk2; p2Þ preserving characteristics (i)–(iv) and satisfying
conditions defined through Eqs. (136) and (140) will ensure
a gauge independent critical coupling αc ¼ π=3 in qQED.
Equations (143) and (144) define simple, numerically
friendly Ansätze for the transverse vertex contribution T
to the gap equation. In Landau gauge, an extension of the

Ansatz defined through Eq. (146) explicitly incorporates
DCSB and still ensures a critical coupling independent of
the ρ parameter.

VIII. CONCLUSIONS

In this article, we have investigated combined constraints
of TTI, LKFT, MR of the massless fermion propagator,
gauge independence of the critical coupling αc in quenched
QED, and one-loop perturbation theory in the asymptotic
limit to construct a general fermion-photon vertex. Notice
that the TTI involve two new nonlocal vertices. Therefore,
the constraints of TTI come at the expense of additional
unknown functions. The parametrization of the transverse
vertex in terms of Yi ensures the new constraints, plus the
nonlocal vertices are quantitatively integrated into the
description of the transverse fermion-photon vertex. We
work explicitly with functions Yi, which arise naturally on
the implementation of the TTI, providing, along the way,
their symmetry properties under the charge conjugation
operation. Through an exact relation, we define effective Yi

for which the angular dependence on the variable q2 has
been integrated out to make their implementation in the gap
equation more efficient. As a simplifying consequence of
working with Yi, we observe that the kernel dependence
on the Gram determinant ∇ðk; pÞ for the mass function
disappears altogether. Moreover, our study reveals that we
cannot force all Yi to be simultaneously equal to zero. It
will violate the LKFT transformation law and theMR of the
massless fermion propagator. We work with quite a general
vertex construction [13], formulated in terms of Yi. We also
provide simple examples of this fermion-photon vertex and
carry out a numerical study of the gap equation to compute
the mass function and its variation as a function of the
coupling strength. The results clearly follow Miransky
scaling law and provide αc ¼ π=3. Moreover, anomalous
mass dimension γm ¼ 1, as has been advocated in several
previous works [83,108–110]. Also, this critical coupling is

TABLE I. Parameters for different gauges.

ξ αc ¼ π=3 κ ϕ

1 0.69% 0.695 0.481
0 0.82% 0.970 1.383
−1 0.51% 1.112 1.604
−2 0.51% 1.199 1.679
−3 2.81% 1.283 1.829

FIG. 4. Euclidean mass in Landau gauge for ρ ¼ 0, 5, 10. ρ
stands for the strength of the DCSB in the vertex, Eq. (146).
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gauge independent. As mentioned before, the fermion-
photon vertex enters the SDE study of several hadronic
observables, such as form factor calculations, where photons
interact with quarks. Therefore, an improved understanding
of this vertex, such as the one detailed in this article, is very
important. Moreover, a natural extension of our work for the
quark-gluon vertex in QCD is currently underway.
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