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Dynamical mass generation in QED

Rainbow apprOXima?ion o - L'll.iralnskly scaling for IQQEI:D with bare Yer‘tiex I(E'=l0) —
in the Landau gatge: . '

a. is a physical observable



Dynamical mass generation in QED

Rainbow approximation beyond the Landau gauge:
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This system of equations decouples in the Landau gauge but in
practice we can solve it in any gauge numerically.



Dynamical mass generation in QED

The bifurcation of dynamical mass takes place at a different
value of the gauge parameter:
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The photon dressing function does not depend upon the gauge
parameter. Need to focus on the fermion-photon interaction.



The fermion-photon interaction

The electron-photon interaction plays a key role in unraveling
the internal structure of hadrons in laboratories like the JLab.

The photons interact with electrically
charged quarks inside hadrons fo study
Their internal structure which stems
primarily from QCD.
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Meson to yy* transition form factor
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Pion electromagnetic form factor
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Truncating the SDEs

The fermion-photon vertex must satisfy the key features of
the associated quantum field theory, i.e., QED.
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Be mindful of. the projections

Projection on the photon SDE

The Fermion Photon Vertex




The transverse vertex

There are numerous implications of gauge covariance which
need to be respected.
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Ward Takahashi identities



Ward-Takahashi identity
The Ward and Ward-J1akahashiidentities:

In the Landau gauge F(k)=F(p) and M(k)~*M(p) at and below
the pole mass.

The WTL is almost satisfied in the Landau gauge for
momenta of interest for non-perfurbative mass generation.



Ward-Takahashi identity
The structure of the Ward-Takahashi identity:
auI*(k,p) = Sp' (k) = Sz (p)

is such that we can divide it into two components, longitudinal
and fransverse 1o the'photon momentum.

The WL only provides information on the longitudinal part
of the vertex. We can think of the following ansatz:

I (k,p) = L (571 (k) — S5 (0)]

q
but it has a kinematic singularity at g= — 0.




Constructing the longitudinal vertex

Let's start from the Ward identity and the general form of
The fermion propagator:
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The longitudinal vertex

We can thus write the longitudinal vertex as follows which
is attributed to the work of Ball and Chiu:

[+

M) _ 0]
F(k)  F(p)

L1 has no Kinematic singularities at ks — pe.

It satisfies the Ward-Takahashi identity.

It obeys the CP symmetry of the fermion-photon vertex.

Is it the complete vertex? Is there a fransverse part?

The bare vertex does not satisfy W I'L beyond Landau gauge.



The vertex - its complexities

What is the complete structure of the fermion-photon
vertex we can construct with 3 vectors and 4 independent
scalars.

I'*(k, p)
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The transverse vertex

Longitudinal vertex consumes 4 basis vectors. The other 8
allow us to expand out the transverse vertex systematically:
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Transverse Takahashi identities



Transverse Takahashi identities

To know a vector completely, we need to know its divergence
as well its curl. Note that for the bare vertex:
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Transverse Takahashi identities

In order to project out fransverse form factors from the
111s, it is convenient to introduce the following projectors:

Contract the first TTI with both these projection operators
and simplify the results:

q“,]._‘y(k:,p) — QVFu(kap) — S_l(p)alw T UMVS_l(k)

—I—ZimOI‘W(k,p) + taeauuﬂré(kap)
+A,, (k,p)




Transverse Takahashi identities
The result can be written in the following form:

q-tt- F(kap) T/,]l:l/ [S_l(p)JZu o 0'/5“/5_1(16)]
+t2q -T'(k,p) + TL vA

AR
q-ty- F(k7p) — Tiz/ [S_l(p)o-zv o O-ZVS_I(k)]
+v-tq-T(k,p)+ T2,V .

These Lorentz scalar objects can be expressed:

i1, Ve = IpYi(k,p) +i(y - q)Ya(k,p)
+i(y - t)Ys3(k,p) + [v - ¢, v - t] Ya(k, p)

iT2 VA = iIpYs(k,p) + (v - q)Ys(k, p)

uv ' pv

+(’7 ) t)Y7(kap) +1 [7 g, t] YS(kap)

and implemented into the gap equation.



Landau-Khalatnikov-Fradkin
Transformations



Landau-Khalatnikov-Fradkin transformations

Ward-Takahashiidentities relate different Green functions
to each other.

Landau-Khalatnikov=-Fradkin transformations tell us how a
Green function will change under a variation of gauge.

These transformations are non-perturbative and most
compactly written in the coordinate space.

In QED, for the fermion propagator:

Se(x;8)=8r(x;0)e 1A(0)~A4()]
00 ddp e—ip.x

Ad(x)=—i§e2,u4_dfo (277_)41 p4



LKET for the fermion propagator

Ln 4-dimensions, we can calculate:

x2
A4(Ein) = Ag(x) = =i In| 5

) : v=a/dm
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We work with momentum space fermion propagator generally:
Sr(p;€)= f d’xe*Sp(x;€)

e S p(p;é)

Sr(x;6)= J

(2m)




LKET: for the fermion propagator

F(p;¢)
ip
Sp(x;€) =%X(x;§)

The general form of massless SH(p; &)=
fermion propagator.is

Based upon our one-loop perfurbation theory calculation




LKET: for the fermion propagator

Lnverse Fourier transform yields:

These are not at a given order in perturbation theory.

These are an all order re-summation of leading logarithms.



LKET: for the fermion propagator

JThe bare'vertex truncation or.even the Ball-Chiu‘longitudinal
vertex do not respect it in all gauges.

This requirement puts tight constraint on the choice of the
rransverse vertex.

“The momentum space Landau-Khalatnikov-Fradkin transformation of
interaction vertices in quantum electrodynamics®,
AB;J. P. Edwards, U.D. Jentschura, J. Nicasio, in progress.



Perturbation Theory



Perturbation Theory

In perturbation theory, all the key properties of a gauge
field Theory are maintained order by order.

So it is natural to demand all Green functions to reproduce
perturbation theory in'‘the weak coupling regime:

At tree level, the fermion-photon vertex is merely y*.

At one-loop, it already becomes very complicated. However,
for the asymptotic values of fermion momenta: K >> p:

k2>>p2 of P\ s
T, (kp)” =" log (—) T

8mk? k?
T = Tgasy — Tﬁasy =12y — kuY - k




The transverse vertex

Recall the numerous implications of gauge covariance which
need to be respected.
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The transverse vertex

8

FZ(k7p) = E Ti(k7p)|1;i(k7p)

1=1
= i[pu(k-q) —ku(p- )]
= [pu(k-q) —kulp-q@)]v-1
= Y — QY- 4,
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Coefficients z;(k,p) are constrained by symmetries of QED.




The transverse vertex

lransverse vertex
consists of the same
structures as the
longitudinal vertex.
o L] !
- |F(k?) F(®*)] k? —p?

o [M(k2> 3 m)] 1
F(i2) ~ F@?) :

Coefficients a. are
constrained by the
symmetries of QED.




The bare vertex in different gauges

Recall the bifurcation of dynamical mass takes place at a
different critical value of the coupling in gauge parameter:
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Constrained vertex in different gauges

-10
10 o3

Ratio of the Euclidean mass and ultraviolet cut-off in different
gauges. o= /3 within the numerical accuracy of computation.

L. Albino, AB, L.X. Gutiérrez-Guerrero, B. El Bennich, E. Rojas,
Phys. Rev. D100 054028 (2019)



Salvnov-Taylor identities

For the quark=gluon vertex;
Slavnov-Tayloriidentity replaces
The ' Ward-Takahashiidentity.

quark-quark-ghost-ghost amplitude

H(k,p) = Xo(k,p)1p + X1(k,p) v - k + Xa2(k,p)v-p+ X3(k,p) [v-k,7 D]



Transverse Slavnov-Taylor identities

In analogy o QED, the transverse part of the quark-gluon
vertex can be constrained by the TSTI relate to its curl.

The Dirac structure of these identities is identical fo that in
QED but they also involve the ghost dressing function and
quark-ghost scattering kernel in QCD.

q.1';(k, p) — @1 (k, p)

= G(¢*) [S7' (p)oyu H*(k,p) + H*(p, k) 0,05~ (k)]
+2imT%,(k, p) + ta€auwp T3 (k,p) + A%, (k, D),

0. T (k,p) — @, T (k, p)

= G(¢") |S7' (p)of, H  (k,p) — H"(p,k) 05, S (k)
‘|‘toz€a,uvﬂ I'; (k p) +V, (kap) )




Perturbation theory

At 1-loop, in the asymptotic limit of incoming and outgoing
fermion momenta: k>>p, QED result can be extended to QCD:

Ca(2—-&) —8Cp(1—¢)
“ 64k2m :

R. Bermudez, L. Albino, L. X. Gutiérrez, M. Tejeda, AB
Phys. Rev. D95 034041 (2017)

The QED result can be readily inferred .
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Local gauge transformation

The expression for. these transformations is not closed in
QCD due to'its non-abelian'nature:

i85 (@) = 485 (@, 5) [eg§ Cr [iAr(@—2')—iAr (0)]

_ 921 CaCF
(20 (312111

{[iAp(z — x') —iAF(0)] [3iAr(z — ') — iAR(0)]}
x [1+ g2Cr (iAr(z — 2') — iAp(0))]

N gs CrC%
an@szin
< [8iAr(z — 2))* — T(iAr(z — 2))(iAF (0)) + ({Ar(0))?] + O()]

[ZAF(SU = .’El) = ’iAF(O)]

M.J. Aslam, A. Bashir, L.X. Gutierrez-Guerrero,
Phys. Rev.D 93 (2016) 7, 076001.

The QED result is recovered for C,=0, C-=1.



Condensate - exploratory study

Thechiral quark
condensate'is
explicitly gauge
invariant.
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§

Gauge dependence of the quark condensate. The horizontal
pink-shaded band indicates the admissible region of a gauge-
independent chiral quark condensate as implied by LKFT in QCD.

H.R. Lessa, F.E. Serna, B. El Bennech, AB, O. Oliveira
Phys. Rev. D107 074017 (2023)



What next?

* What role does chiral symmetry and its dynamical breaking
play in QCD and hadron physics?

* Can we start from a simple illustrative example of how we
can start from SDEs of QCD and from their extract
physical observables of hadron physicslaboratories?

* How do we study bound states, mesons, baryons?

- How do we improve upon our. studies?



