Deep Exclusive Reactions

Lecture 1: Nucleon structure studies with the electromagnetic probe

- Elastic scattering: form factors
- DIS: structure function
- Exclusive reactions: Generalized Parton Distributions

Lecture 2: Deeply Virtual Compton Scattering

- GPDs and DVCS
- DVCS on the proton with JLab@6 GeV
- Extraction of GPDs from data
- Proton tomography and forces in the proton

Lecture 3: DVCS and beyond

- DVMP
- New DVCS experiments@12 GeV
- TCS

Lecture 4: Perspectives

- Upgrades at JLab
- GPDs at the EIC

Lecture 5: Tutorial

• Data analysis techniques for exclusive reactions

Recap: what have we learned so far on GPDs

- $Im\mathcal{H}$ well constrained, in CLAS (and now CLAS12) kinematics \rightarrow proton tomography
- *ReH* constrained mainly by Hall A measurements in selected kinematics; important for D-term and distribution of forces
- Initial constraints on $\tilde{\mathcal{H}}$ from longitudinally polarized target experiments, more data coming soon
- Potential of TCS for *ReH*, D-term, universality of GPDs
- Importance of nDVCS for \mathcal{E}_n sensitivity and flavor separation, but low statistics
- pDVCS on transverse target is vital to constrain \mathcal{E}_p
- Still no information on *x* dependence of GPDs
- DVMP: only pseudo-scalars had until now a « succesful » GPD interpretation (transversity) \rightarrow higher Q² may be necessary

Perspectives for the next few years

- DVCS on transversely polarized protons at CLAS12
- Upgrades for JLab under discussion:
 - ✓ Higher luminosity for CLAS12
 - ✓ Polarized positrons beam
 - ✓ Double CEBAF beam energy
- Electron-Ion Collider (EIC)

CLAS12: p-DVCS transverse target-spin asymmetry

100 days of beam time; Beam pol. = 80% ; target pol. = 60% ; Luminosity = 5×10^{33} cm⁻²s⁻¹

Transverse target for CLAS12: an experimental challenge

HD-ICE (project was discontinued):

- pros: minimize the dilution and nuclear background (due to not-polarizable material) pros: maximize acceptance (thanks to the light magnetic system)
- cons: beam heating and radiation damage polarization wouldn't hold in electron beam
- cons: long preparation time

Dynamically polarized NH3:

- pros: consolidated technology and infrastructure at JLab
- cons: increased systematic effect (nuclear effects, non uniform target density)
- cons: impact on the experimental setup (massive magnet of strong field and reduced acceptance): incompatible with the CLAS12 central detector; limited acceptance $\pm 25^{\circ}$ forward

- Feasibility studies for pDVCS with limited acceptance are ongoing
- R&D studies on possible alternative target solutions are also ongoing

Juan Sebastian Alvarado

DDVCS: the gateway to the full kinematic mapping of GPDs

Thanks to the virtuality of the final photon, Q'², **DDVCS** allows a unique direct access to GPDs at $\mathbf{x} \neq \pm \boldsymbol{\xi}$ (within $0 < 2\boldsymbol{\xi}' - \boldsymbol{\xi} < \boldsymbol{\xi}$), which is fundamental for their modeling

Experimental challenges:

- Small cross section (300 times less than DVCS)
- Need to detect muons

µCLAS12 for DDVCS and J/psi

$ep \rightarrow e'p'\mu^+\mu^- at L \sim 10^{37} cm^{-2}s^{-1}$

- Remove HTCC and install in the region of active volume of HTCC
- a new Moller cone that extends up to 7°
- a new PbWO4 calorimeter that covers 7° to 30° polar angular range with 2π azimuthal coverage.
- Behind the calorimeter, a 30-cm-thick tungsten shield covers the whole acceptance of the CLAS12 FD
- MPGD tracker in front of the calorimeter for vertexing and inside the solenoid for recoil proton tagging

S. Stepanyan, LOI12-16-004

DDVCS project also for SOLID

Polarized positrons beam for Jefferson Lab

Physics Motivations:

- Two-photon physics
- Generalized parton distributions
- Neutral and charged current DIS
- Charm production
- Neutral electroweak coupling
- Light Dark Matter search
- Charged Lepton Flavor Violation

PePPO: proof-of-principle for a polarized positron beam PRL 116 (2016)

- Publication of the **EPJ A Topical Issue about "An experimental program with positron beams at Jefferson lab"** gathering about 250 physicists from 75 institutions around a several-years-long experimental program.
- Two DVCS-based proposals were submitted to JLab PAC48 and were Conditionally Approved

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA 91191 Gif-sur-Yvette, Franc An Experimental Program with Positron Beams ² Laboratoire de Physique des 2 Infinis Irêne Joliot-Curie, Université Paris-Saclay, CNRSIN2P3, IJCLab, 15 rue Georges Clémenceau, 91405 Orsay cedex, France 36 Physics Department, Cairo University, Giza 12613, Egg at Jefferson Lab 17 University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdo ¹ The George Washington University, 221 I Street NW, Washington, DC 20052, USA 38 North Carolina A&T State University, 1601 E Market Street, Greensboro, NC 27411, USA Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. ¹⁰ Hampton University, Physics Department, 200 William R. Harvey Way, Hampton, VA 23668, US. A. Accardi^{1,39}, A. Atanasev³, I. Albavrak⁴¹, S.F. Ali⁵⁶, M. Amarvan¹⁷, J.R.M. Annand³⁷, J. Arrington¹¹ 45 James Madison University, Harrisonburg, VA 22807, USA Diffuentity of Vinduia Department of Physics 387 McConnick Rd Charlotterville VA 22004 1184 A. Asaturyan⁵⁹, H. Avakian¹, T. Averett⁵⁷, C. Averbe Gavoso¹⁵, L. Barion³², M. Battadieri^{1,9} Akdeniz Üniversitesi, Pinarbaşi Mahallesi, 07070 Konyaalti/Analya, Turke 6 The University of North Georgia, 82 College Cir, Dahlonega, GA 30597, USA V. Bellini²⁸, F. Benmokhtar⁴⁸, V. Berdnikov⁵⁶, J.C. Bernauer^{20,22}, A. Bianconi^{27,45}, A. Biselli³¹ 12 New Mexico State University, 1780 E University Ave, Las Cruces, NM 88003, USA M. Boer²⁹, M. Bondi⁹, K.-T. Brinkmann³⁴, W.J. Briscoe³, V. Burkert¹, T. Cao³⁹, A. Camsonne¹ ⁷ Dake University and Triangle Universities Nuclear Laboratory, Department of Physics, 134 Chapel Drive, Durham, NC 27708, USA ¹ Univerza v Liubliani, Faculteta za Matematico in Fiziko, Jadranska ulica 19, 1000 Liubliana, Sloveni R. Capobianco²¹, L. Cardman¹, M. Carmignotto¹, M. Caudron², L. Causse², A. Celentano⁹ ¹⁴ Florida International University, Modesto A. Maidique Campus, 11200 SW 8th Street, CP 204, Miami, FL 33199, USA * Intinuo Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40 - 00044 Frascati, hab P. Chatagnon², T. Chetry¹⁵, G. Ciullo^{32,33}, E. Cline²⁰, P.L. Cole²⁴, M. Contalbrigo³², G. Costantini^{27,45} ^b Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso, 33 - 16146 Genova, Italy ¹⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via Agostino Bassi, 6 - 27100 Pavia, Italy A. D'Angelo^{52,53}, D. Dav⁵, M. Defurne³⁵, M. De Napoli²⁸, A. Deur¹, R. De Vita⁹, N. D'Hose³ ²⁶ University of West Florida, 11000 University Ploys, Pensacola, FL 32514, USA S. Diehl^{21,34}, M. Diefenthaler¹, B. Dongwi³⁹, R. Dupré², D. Dutta¹⁵, M. Ehrhart², L. El-Fassi¹¹ ¹⁰ Università di Genova, Via Balbi, 5 - 16126 Genova, Italy 47 Temple University, Physics Department, 1925 N 12th Street, Philadelphia, PA 19122-180, USA 11 Argonne National Laboratory, Physics Division, 9700 S Cass Ave., Lemont, IL, USA L. Elouadrhini¹, R. Ent¹, J. Erler^{13,14}, I.P. Fernando³⁹, A. Filippi⁵⁵, D. Flay¹, T. Forest⁴⁹, E. Fuchey² 44 Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15208, USA S. Fucini¹⁸, Y. Furletova¹, H. Gao⁷, D. Gaskell¹, A. Gasparian¹⁸, T. Gautam³⁰, F.-X. Girod²¹ 12 Institute für Physik, Johannes Gatenberg-Universit/0, 55099 Maine, Germany 45 Idaho State University, Pocatello, ID 83209, USA J. Grames¹, P. Gueye³⁰, M. Guidal², S. Habet², D.J. Hamilton³⁷, O. Hansen¹, D. Hasell⁴ 13 PRISMA+ Cluster of Excellence and Helmholt: Institute Main:, Johannes Gutenberg-Un with \$5000 Mains Garma 50 Virginia Union University, 1500 N Lombardy Street, Richmond, VA 23220, USA M. Hattawy¹⁷, D.W. Higinbotham¹, A. Hobart², T. Horn⁵⁶, C.E. Hyde¹⁷, H. Ibrahim³⁶, A. Italiano²⁸ 14 Universidad Nacional Autónoma de México, Instituto de Física, Departamento de Física Teórica, 04510 CDMX, México 51 Istituto Nazionale di Fisica Nucleare. Sezione di Roma. Piazzale A. Moro 2 - 00185 Roma. Italy K. Joo²¹, S.J. Joosten¹¹, N. Kalantarians⁵⁰, G. Kalicy⁵⁶, D. Keller⁵, C. Keppel¹, M. Kerver¹⁷ 15 Mississippi State University, Mississippi State, MS 39762, USA 12 Istinuto Navionale di Fisica Nucleare. Seviane di Roma Tar Venana. Via de la Ricerca Scientifica. L. (VI182 Roma Ital A. Kim²¹, J. Kim¹¹, P.M. King²³, E. Kinney²⁶, V. Klimenko²¹, H.-S. Ko², M. Kohl³⁹, V. Kozhuharov^{8,54} ¹⁶ Faculté des Sciences de Monastir Avenue de l'Emironnement 5019 Monastir Tunisi 53 Università deeli Studi di Roma Tor Veruata, Via Cracovia, 50 - 00133 Roma, Italy V. Kubarovsky¹, T. Kutz^{3,4}, L. Lanza^{52,53}, M. Leali^{27,45}, P. Lenisa^{32,33}, N. Livanage⁵, Q. Liu¹² 17 Old Dominion University, 4600 Elkhorn Ave. Norfolk, VA 23529, USA 54 University of Sofia, Faculty of Physics, 5 J. Bourchier Blyd., 1164 Sofia, Bulgaria S. Liuti⁵, J. Mammei⁵⁸, S. Mantry⁶, D. Marchand², P. Markowitz⁴⁴, L. Marsicano^{9,10}, V. Mascagna^{27,45} ¹⁶ Dipartimento di Fisica e Geologia, Università degli studi di Perugia, INFN Sezione di Perugia, via A. Pascoli suc, 06123 ⁵⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria, 1 - 10125 Torino, Italy M. Mazouz¹⁶, M. McCaughan¹, B. McKinnon³⁷, D. McNulty⁴⁰, W. Melnitchouk¹, Z.-E. Meziani¹¹ Perueia Italy 56 The Catholic University of America, Washington, DC 20064, USA M. Mihovilovič⁴³, R. Milner⁴, A. Mkrtchyan⁵⁹, H. Mkrtchyan⁵⁹, A. Movsisyan³², M. Muhoza⁵⁶, 19 Sapienza Università di Roma, Piazzale Aldo Moro 5 - 00185 Roma, Italy 17 The College of William & Mars. Small Hall, 300 Ukron Way, Williamshure, VA 23185, USA 20 Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA C. Muñoz Camacho², J. Murphy²³, P. Nadel-Turoński²⁰, J. Nazeer³⁹, S. Niccolai², G. Niculescu⁴⁰ R. Novotny³⁴, M. Paolone⁴², L. Pappalardo^{32,33}, R. Paremuzyan²⁹, E. Pasyuk¹, T. Patel⁵⁹, I. Paog⁵⁶ 58 University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T2N2, Canado 21 University of Connecticut, Department of Physics, 196 Auditorium Road, Stores, CT 06269-3046, USA ⁵⁰ A. Alikhanyan National Laboratory, Yerevan Physics Institute, Yerevan 375036, Armenia C. Peng¹¹, D. Perera⁵, M. Poelker¹, K. Price², A.J.R. Puckett²¹, M. Raggi^{8,19}, N. Raggazzo²¹ 22 RIKEN-Brookhaven Research Center, Brookhaven National Lab. 98 Rochester St. Upton, NY 11973, USA M.N.H. Rashad¹⁷, M. Rathnayake³⁹, B. Raue⁴⁴, P.E. Reimer¹¹, M. Rinaldi¹⁸, A. Rizzo^{52,53} 23 Ohio University, Athens, OH 45701, USA J. Roche²³, O. Rondon-Aramayo⁵, F. Sabatié³⁵, G. Salmé⁵¹, E. Santopinto⁹, R. Santos Estrada²¹ 24 Lamar University, Physics Department, 4400 MLK Boulevard, Beaumont, TX 77710, USA B. Sawatzky¹, A. Schmidt³, P. Schweitzer²¹, S. Scopetta¹⁸, V. Sergeveva², M. Shabestari⁴⁶ 25 Tsinehua University 30 Shuaneaine Rd, Haidian District, Reijine 100084, PR, China A. Shahinvan⁵⁹, Y. Sharabian¹, S. Širca⁴³, E. Smith¹, D. Sokhan³⁷, A. Somov¹, N. Sparveris⁴⁷ 26 University of Colorado Readder CO 80309 US4 M. Spata¹, S. Stepanyan¹, P. Stoler²¹, I. Strakovsky³, R. Suleiman¹, M. Suresh³⁹, H. Szumila-27 Università degli Studi di Brescia, Via Branze, 38 - 25121 Brescia, Ita Vance¹ V. Tadevosvan⁵⁹ A.S. Tadenalli¹ M. Tietenback¹ R. Trotta⁵⁶ M. Uncaro¹ P. Valente¹⁹ 28 Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via Santa Sofia, 64 - 95123 Catania, Ito L. Venturelli^{27,45}, H. Voskanyan⁵⁹, E. Voutier², B. Wojtsekhowski¹, S. Wood¹, J. Xie¹¹, Z. Ye²⁵ Eur. Phys. J. A 58 (2022) 3, 45 29 University of New Hampshire, Durham, NH 03824, USA M. Yurov⁵, H.-G. Zaunick³⁴, S. Zhamkochyan⁵⁹, J. Zhang⁵, S. Zhang¹, S. Zhao², Z.W. Zhao⁷, ¹⁰ Facility for Rare Isotope Beams, Michigan State University, 640 South Shaw Lane, East Lansing, MI 48824, USA X. Zheng⁵, C. Zorn 31 Fairfield University, 1073 N Benson Road, Fairfield, CT 06824, USA 32 Istituto Navionale di Fisica Nucleare. Sevione di Ferrara Via Santoat. 1 - 44122 Ferrara, Ital 33 Università di Ferrara, Via Ludovico Ariosto, 35 - 44121 Ferrara, Italy 34 Universität Gießen, Luwigstraße 23, 35390 Gießen, Germa 35 Institut de Recherche sur les Lois Fondamentales de l'Univers, Commissariat à l'Energie Atomique, Université Paris-Saclay, 2 1 e"@JLab White Pape 4 | e"@JLab White Pap

- The ongoing R&D aims to identify the most appropriate implementation of PEPPo at CEBAF, taking into account the many constraints and technological challenges towards the development of a prototype and a CDR
- Possible timeline? Discussions ongoing at JLab

DVCS with polarized positrons beam at JLab

The important of beam-charge asymmetry for DVCS was highlighted by the pioneering HERMES experiment Disposing of a polarized positron/electron beams at JLab \rightarrow new observables = different sensitivities to GPDs Beam Charge Asymmetries proposed to be measured at CLAS12:

- The unpolarized beam charge asymmetry A_C^{UU} , which is sensitive to the real part of the CFF \rightarrow D-term, forces in the proton
- The polarized beam charge asymmetry A_{C}^{LU} , which is sensitive to the imaginary part of the CFF
- The neutral beam spin asymmetry A_0^{LU} , which is sensitive to higher twist effects

pDVCS and nDVCS with polarized positrons beam at CLAS

Model predictions for 2 out of the 3 proposed pDVCS observables

Impact of positron pDVCS projected data on the extraction of ReH via global fits: major reduction of relative uncertainties, especially at low -t

V. Burkert et al., Eur. Phys. J. A (2021) 57

nDVCS Beam-charge asymmetry (BCA):

This observables has a strong impact on the extraction of $Re\mathcal{E}$. This was verified via local fits to the projections of approved CLAS12 nDVCS measurements with and without BCA

Projections (VGG) for the BCA, for various values of J_u , J_d

0.3, 0.1; 0.2/0.0; 0.1/-0.1; 0.3/-0.1

JLab 22 GeV upgrade

DVCS: 22 GeV required to cover sufficient range in t for the extraction of mechanical properties.

- Existing DVMP CLAS data for vector mesons are in a region in which the leading-twist handbag doesn't apply: GPD predictions work only at very small values of x_B , and Q² larger than about 50 GeV²
- At 20+ GeV energy and luminosity upgrade, one could go to higher Q2 (assuming sufficient luminosity) at moderate x, to be in the GPD regime for the valence quarks

EIC: the answer to many open questions in QCD

Saturation: a new state of hadronic matter?

What happens to the **gluon density** in nuclei at high energies? It cannot grow infinetely...

Is there a **saturation** in some sort of gluonic matter with universal properties (« color glass condensate »)?

Exploring the partonic structure of nucleons and nuclei

How do the **spin** and the **mass** of the nucleon emerge from the dynamics of its constituents?

What are the position, momentum and spin distributions of **sea quarks and gluons** in the nucleon and in light nuclei? What is the role of orbital momentum?

What is the role of orbital momentum?

The role of gluons in nuclear medium

How do gluons and sea quarks contribute to nucleon-nucleon force? How does nuclear matter react when a colored charge passes through it? How does nuclear matter affect quark and gluon distributions and their interactions in nuclei?

Why do we need an <u>electron-ion</u> collider?

Hadron-hadron

Probe and target have a complex strucure Soft interactions before collisions can destroy factorization Kinematics imprecisely determined

Kinematic variables: $Q^2 = - (k-k')^2$ (Resolution) $x = Q^2/2M\nu = Q^2/(2pq)$ (mom. fraction) $\nu = E_e - E_e$, $s = (p+k)^2 = 4E_e E_p$

Point-like probe No initial-state soft interactions, factorization preserved Kinematics precisely determined

An EIC, with **high luminosity,** versatile beam **species** and beam **polarizations**, covering $0.1 < Q^2 < 1000 \text{ GeV}^2$, $10^{-4} < x < 10^{-1}$ is needed to:

- explore both the region of **non-perturbative** effects and the **gluon dominated** region
- precisely image the sea quarks and gluons in nucleons and nuclei
- resolve outstanding issues in understanding nucleons and nuclei in terms of fundamental building blocks of QCD

Multi-D partonic image of the nucleon with the EIC

Generalized Parton Distributions

EIC: Luminosity and physics goals

EIC kinematic reach: DVCS

EIC facility @ BNL

The EIC will be built at BNL by adding an electron storage ring to the existing RHIC facility:

- Highly polarized electron / Highly polarized proton and lights ions / Unpolarized heavy ions
- ➤ CME: ~ 20 100 GeV
- > Luminosity: ~ 10^{33-34} cm⁻²s⁻¹
- Polarized electron source and 400 MeV injector linac
- 2 detector interaction points capability in the design

Project status:

- Awarded CD-0, CD-1 and site selection
- Lots of recent and future activities towards CD-2/3
- EIC facility completion in roughly a decade from now

General requirements of the EIC detector

Vertex detector \rightarrow Identify primary and secondary vertices,

Low material budget: 0.05% X/X₀ per layer; High spatial resolution: 10 mm pitch CMOS Monolithic Active Pixel Sensor

Central tracker → Measure charged track momenta MAPS – tracking layers in combination with micro pattern gas detectors MPGD: µRWell or MicroMegas

Electron and hadron endcap tracker → Measure charged track momenta MAPS – disks in combination with micro pattern gas detectors

Particle Identification → pion, kaon, proton separation on track level RICH detectors (modular and dual radiator RICH, DIRC) & Time-of-Flight high resolution timing detectors (LAPPDs, LGAD) 10 – 30 ps novel photon sensors: MCP-PMT / LAPPD

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons PbWO₄ Crystals (backward), W/SciFi Spacal (forward) Barrel: Pb/SciFi+imaging part or new Scintillating glass

Hadron calorimeter → Measure charged hadrons, neutrons and K⁰ challenge achieve ~50%/VE + 10% for low E hadrons (<E> ~ 20 GeV) Fe/Sc sandwich with longitudinal segmentation

DAQ & Readout Electronics: trigger-less / streaming DAQ Integrate AI into DAQ → cognizant Detector

Very forward and backward detectors → scattered particles under very small angles Silicon tracking layers in lepton and hadron beam vacuum

Zero – degree high resolution electromagnetic and hadronic calorimeter

The ePIC detector (« Detector 1 »)

Tracking:

- New 1.7T solenoid
- Si MAPS Tracker
- MPGDs (µRWELL/µMegas)

PID:

- hpDIRC
- mRICH/pfRICH
- dRICH
- AC-LGAD (~30ps TOF) Calorimetry:
- Barrel EMCal
- PbWO4 EMCal in backward direction
- Finely segmented EMCal +HCal in forward direction
- Outer HCal (sPHENIX re-use)
- Backwards HCal (tail-catcher)

How to measure DVCS at EIC: EMCal, Roman Pots

These are the R&D projects ongoing in my lab, IJCLab Orsay ©

Laboratoire de Physique

des 2 Infinis

Conclusions/summary

- ✓ GPDs are a unique tool to explore **the structure of the nucleon**:
 - **3D** quark/gluon **imaging** of the nucleon
 - orbital angular momentum carried by quarks
 - **pressure** distribution

✓ Fitting methods allow to extract CFFs (→ GPDs) from DVCS observables → several p-DVCS and n-DVCS observables are needed, covering a wide phase space

✓ A lot of **recent results** on DVCS observables were obtained from **CLAS** and **Hall-A** at 6 GeV

 \rightarrow First **tomographic interpretations** of the quarks in the **proton** from DVCS

✓ JLab@12 GeV is **the optimal facility** to perform GPD experiments **in the valence region**

 \rightarrow DVCS and DVMP experiments on both proton and neutron (pol. and unpol.) are ongoing in 3 of the 4 Halls at JLab@12 GeV: quarks' spatial densities, flavor separation, quarks' orbital angular momentum, ...

 \rightarrow JLab upgrade perspectives (positron beam, higher luminosity and energy) pave the road to the completion of the GPD program in the valence regime

 \rightarrow Longer-term future: EIC, to study the gluonic structure of the nucleon and gluon GPDs