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Introduction

A correct description of particles at the fundamental level
requires a Poincaré invariant treatment.

The Standard Model of 
particle physics provides 
a unified description of 
three  quantum field 
theories, QED, weak 
interactions and QCD. 

It is achieved through a reconciliation of quantum mechanics
with special relativity, giving rise to the relativistic quantum 
mechanics or quantum field theories.



Introduction
Fundamental equations of motion of every quantum field 
theory are called Schwinger-Dyson Equations. They encode all 
the information of a given quantum field theory. 

"The S Matrix in Quantum Electrodynamics" F. Dyson, Phys. Rev. 75 (11): 1736 (1949).

"On Green's functions of quantized fields I + II", J. Schwinger, PNAS 37 (7): 452–459, (1951).



Introduction

The fundamental entities in a QFT are fields whose
fluctuations represent an infinity of particles.

This non-conservation of particles is crucial because it is 
essentially connected with the existence of virtual particles
which are the building blocks of the Schwinger–Dyson 
equations. 

For example, neutral particles correspond to the following
scalar fields allowing for the non-conservation of particles.



Introduction
All relativistic quantum field theories of the Standard Model 
admit analysis in perturbation theory. 

Hadron physics primarily involves QCD. Its perturbative 
treatment has long been exercised: Gross, Politzer, Wilczek, 
(Nobel Prize 2004). 



What are the Schwinger-Dyson equations?

The structure of the infinite tower of equations is such that 
the equation for the 2-point Green function involves the 
3-point function, the one for the 3-point function involves 
the 4-point function and so on ad infinitum. 

Formal derivation of SDEs is without any recourse to the 
smallness of the strength of the interaction involved.

SDEs are an infinite set of coupled integral equations among
the Green functions of a quantum field theory.

Non-perturbative QCD is crucial in the study of hadrons. In 
continuum, SDEs are an ideal tool to study hadron physics.

Therefore, within the same formalism, we can study the 
ultraviolet and infrared dynamics of QCD.



The Dirac equation
The Dirac equation for a free fermion of mass m is:

Interaction with an electromagnetic field is incorporated
through the usual minimal substitution:

This equation can be solved through the construction of a
Green function satisfying:



The formal solution of the Dirac equation is then:

It is easy to verify:

What is G0(x,y)?

The Dirac equation - solution



G0(x,y) is the position space fermion propagator:

Fourier transformation of G0(x,y)is:

The fermion propagator



Iterative method:

Beyond the leading order:

The iterative method



In the next iterative step, we have:

This procedure is at the heart of perturbation theory.

Perturbation theory



Recall the equation for the Green function:

Fermion propagator

In the presence of an external electromagnetic field:

This yields following perturbative series:



Bare propagator:

Perturbative
series

Fermion propagator



Classification of perturbative series:

Fermion propagator



The full Green functions
This perturbative series can be summed up:

Expanding out the last blob again, we can draw:

Define self energy as:



The full fermion propagator
Towards mathematical construct:

This series can be written in a compact manner:



Schwinger-Dyson equations
Schwinger-Dyson equation for the fermion propagator:

SDE for the inverse fermion propagator:

Electron propagator
(QED)

Quark propagator
(QCD)



Schwinger-Dyson equations (QED)
First three of an infinite tower of SDEs in QED:



SDE for the fermion propagator

• Fermion propagator SDE:

Full fermion propagator:Bare fermion propagator:



On the photon propagator
Bare photon propagator:

Superscript “T” stands for the transversality of the photon
propagator to its 4-momentum:

Full photon propagator: receives no corrections to its
longitudinal part



The quenched approximation
Full photon propagator:

Quenched approximation:



The fermion propagator SDE

The Ward-Takahashi identity:



The fermion propagator SDE

The odd integral:



The rainbow approximation

The Vertex:



Decoupling the equations

It is a matrix equation with two independent equations
contained in it:



The details

Take traces:



From Minkowski to Euclidean space

The Wick
rotation:



Simplifying the equations
After taking traces and Wick rotation:

Simplify:



The integrations
Angular integration:

Without loss
of generality:



The integrations



The coupled equations 
Equation for the F-function:

Equation for the M-function:

In the Landau gauge:



Apply bifurcation analysis to linearize the equation by
setting M(p)=0 in the chiral limit (m=0).

It gives exact results when the generated mass is so small
that its square and higher powers can be neglected.

The fermion mass function
Equation for the mass function:



Linearization makes the equation scale invariant.

The new integrand contributes extravagantly for k2 -> 0 in
contrast with its original parent equation.

The fermion mass function

In the chiral limit, Wigner mode solution is obvious. We look
for a non perturbative Nambu solution.

To remedy this, we introduce an infrared cut off:

X



Infrared boundary condition
The linearized mass function:

Take the derivative with respect to x:

This imposes the infrared boundary condition:



Differential equation for the mass function

Let us rewrite the first derivative is:

The second derivative gives the differential equation:

The linearized equation can be written as:



The ultraviolet boundary condition 
The derivative of the last equation picks out the ultraviolet
behaviour of the mass function:

Ultraviolet boundary condition:

At criticality, the mass function is multiplicatively
renormalizable and has solution of the type:



Fermion mass function

The power law solution

It yields:

substituted in:

requires:



Fermion mass function
The critical coupling corresponds to the boundary of a phase
transition where real and complex solution bifurcate away
from each other.

After incorporating boundary conditions, we have



Numerical solution
Recall the equation for the mass function:

This equation is of the type:

In the chiral limit m=0, there exist Wigner as well as
Nambu modes. Perturbation theory only admits Wigner
solution and has no access to Nambu solution.



Numerical solution

The running
fermion mass
function:



Numerical solution

The running
fermion mass
function:



Numerical solution

Miransky scaling

This scaling law is also
observed in other
theories: reduced QED

L. Albino, AB, A.J. Mizher, A. Raya, Phys. Rev. D 106 9 096007 (2022).



On dynamical mass generation

Schwinger-Dyson 
Equations

QCD Phase 
Diagram (T,µ)

QCD
(as,ΛQCD)

Dynamical
Mass 

Generation

Magnetic 
Catalysis(a,eB)

Condensed 
Matter 

Systems 
(a,x,vF,,k)

QED
(a,Λ)



What next?
• We only worked on a simple example of truncating SDEs.

• Can we retain the useful information even on truncating the
SDEs at certain Green function?

• How can we ensure symmetries of a QFT are preserved?

• Is our treatment of the SDEs systematically improvable?


