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Quantum electrodynamics
Let us start with the QED Lagrangian:



Quantum Electrodynamics

Employing the QED Lagrangian, when we compute physical
observables beyond tree level, they come out infinite.

However, QED is a renormalizable theory. We can add
counter terms of the same form as present in the original
Lagrangian to come up with a new Lagrangian whose
predictions are consistent with experimental results.

As the counter terms are of the same form, it is straight
forward to add them to the original Lagrangian to get the
modified Lagrangian whose coefficients are infinitely large,
namely the bare Lagrangian L .



The bare Lagrangian
We choose to write the bare QED Lagrangian as:

Explicitly, this bare QED Lagrangian is:



Renormalization constants
Quantities in this bare Lagrangian are connected to the
renormalized quantities of the original Lagrangian through
infinite multiplicative renormalization constants for each
term:

This implies certain relations between the bare and the
renormalized quantities.



Renormalization constants

It implies:



Renormalization constants
Use:

Define:



Renormalization constants
Now compare the relations:



Relations among renormalization constants
The coefficient of each term being unity implies:



Dimensional analysis
Renormalization constants in MS scheme have the structure:

We must define the renormalized coupling in such a way
that it remains dimensionless in d dimensions.

The action is dimensionless, because it appears in the
exponent in the Feynman path integral. The action is an
integral of L over d-dimensional space-time.

Thus the mass dimension of the Lagrangian L is [L]=d.
Show that: (d=4-2e)



Electromagnetic coupling
To define dimensionless coupling, we introduce a parameter µ
called the renormalization scale.

MS scheme:

Use:

where g is the Euler constant.

Thus a physical quantity is first expressed in terms of
the bare coupling and then expressed in terms of the
renormalized coupling.

Thus inversely:



QED Feynman rules

Additional Feynman rules (loops):

A (-1) and trace for every
fermion loop.

Integration over undetermined
loop momentum òddk/(2p)d

Massless QED:

Properties of 
Dirac matrices

Warning!!!
Notation



The photon propagator

The photon propagator has the structure:

where the photon self-energy iPµn(p) (denoted by a shaded
blob) is the sum of all one-particle-irreducible diagrams
(diagrams which cannot be cut into two disconnected pieces
by cutting a single photon line), not including the external
photon propagators.



The photon propagator
The series can also be rewritten as:

Thus the inverse of the photon propagator is:

The Ward identity reads:

Thus the general form of the photon self energy is:

Therefore:



The photon propagator

Thus the longitudinal part of the full propagator gets no
corrections, to any order of perturbation theory.
As the photon propagator involves the product of two
photon field vectors, full bare propagator is related to the
renormalized one by (watch out for notation!):

Thus Ward identity implies:



Photon propagator at one loop
Let us start with one
loop photon propagator:

Hence the self energy
can be written as:

Contract with gµn, take
trace and simplify:



Photon propagator at one loop

Hence:

Therefore,
bare one loop
photon
propagator is:

Thus:

It requires:

rendering:



Electron self energy and vertex at one loop



The b function of QED
Recall the relation between renormalized and bare charge
in the Msbar scheme:

Keeping the µ–dependent quantities on one-side (the right
hand side), we can rearrange the above expression as:

Taking the log of both sides:

Taking the derivative with respect to logµ , we have:



The b function of QED

b-function of QED is defined as:

We thus have:

The last equation can be written as:

We can rearrange this equation as follows:



The b function of QED

We are interested in it till order a:

The knowledge of Za to one-loop allows us to write:

Differentiate
appropriately:



The b function of QED
This enables us to evaluate the 1-loop b-function:

Hence the b–function is given by:

Therefore the QED b–function to 1-loop is:



The running coupling of QED

Let us start again from:

And work in the limit e ® 0:

It can be re-written as (inserting expansion of b-function):

The last equation can be simplified as follows:



The running coupling of QED

The solution to this equation can be written as:

The last equation can be simplified as follows:

The inverse of this equation is:



The running coupling of QED
The running coupling of QED is:

Inserting the calculated value of b0 (-4/3):

In another set of variables:



The running coupling of QED

Running loop running
coupling in QED

Recall the
expansion:

As we had indicated before,
the bare charge of electron
is screened by virtual e+ e-

pairs.

The QED vacuum behaves like a polarizable dielectric.



The running coupling of QED

Thus:



The running coupling of QED
Landau pole:

But non-perturbative effects would come in way below this
energy and is highly unlikely that perturbative QED as is
would be valid in this regime.

One might worry
about coupling
becoming
infinite at:



The running coupling of QED
Experimental Measurement:

In QED, running coupling
increases very slowly.

Atomic physics:
Q2 ≈ 0

High energy physics:



Quantum chromodynamics
The QCD Lagrangian for nf massless quark flavors:

where q0i are the quark fields. Their covariant derivative is:

where A0𝛍
a are the gluon fields, ta are the generators of the

color group and the field strength tensor, the solution of:

is given by:



Quantum chromodynamic
In covariant gauges, we have to introduce gauge-fixing term
and the ghosts

where a0 is the gauge parameter, c0
a is the ghost field, a

scalar field obeying Fermi statistics.

Its covariant derivative is:

where:

are generators of the color group in adjoint representation.



Feynman rules



Feynman rules



QCD running coupling
Just as in QED, the renormalized fields and parameters are
related to the bare quantities through the renormalization
constants:

Also, analogously, the QCD running coupling is:

What is needed to be evaluated is:



QCD running coupling

In QED, we were lucky to have the relation:

And we only needed to evaluate one-loop photon propagator.
We are not so lucky in QCD. So we need to know the one-loop
results for quark and gluon propagators as well as the quark-
gluon vertex.

For one-loop massless
quark propagator:



One-loop quark propagator

One-loop massless quark self energy is:

with divergent part:

And we can deduce the quark field renormalization constant:



One-loop gluon propagator

The transverse gluon propagator to one loop accuracy is:

The gluon field renormalization constant is:



One-loop quark-gluon vertex

The divergent part of the one-loop quark-gluon vertex is:

The quark-gluon vertex renormalization constant is:



One-loop quark-gluon vertex
Recall the coupling renormalization constant:

The quark-gluon vertex renormalization constant is:

Then difference between QED and QCD:

It is a gauge invariant quantity!



The 𝛽-function of QCD
The 𝛽-function is:

The RG equation is:

It shows 𝛼s(µ) decreases when µ increases. This behavior
(opposite to screening) is called asymptotic freedom.



QED vs QCD



Running coupling of QCD
Competition between color and flavor:



Running coupling of QCD

• At high momentum scale, is rather small, for example at
µ=Mz, 𝛼s≈0.12. This where we can apply perturbation theory.

• That is why in DIS experiments, quarks behave as if they
are quasi free confirming asymptotic freedom.



Running coupling of QCD

D. Binosi, C. Mezrag, J. Papavassiliou, 
C.D. Roberts, J. Rodríguez-Quintero, 

Phys. Rev. D 96, 054026 (2017)

Process-independent

It is evaluated using the gluon-ghost sector alone.

The gluon mass generation in the infrared causes the running
coupling to saturate in the infrared.



What Next?
• How can we study hadron physics starting from QCD?

• Are there fundamental equations of QCD which can
allow us to study non-perturbative regimes of QCD?

• How are they derived?

• How are they be solved beyond perturbation theory?


