
Gauge Symmetry in QED
● The Lagrangian density for the free e.m. field is

Lem = − 1
4FµνFµν

where F µν is the field strength tensor

Fµν = ∂µAν − ∂νAµ =





0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0





Thus Lem = 1
2 (E2 −B2)

● In A0 = 0 gauge the momentum density is

π =
∂A

∂t
= −E

hence
Hem = π · Ȧ− Lem = 1

2 (E2 + B2)
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● Gauge symmetry: F µν and hence Lem are invariant under transformation

Aµ → A′µ = Aµ + ∂µχ

N.B. A photon mass term 1
2m2

γAµAµ is forbidden by gauge symmetry.

● The full Lagrangian for charged Dirac fermions interacting with the e.m. field
is L = Lem + LD where

LD = iψ̄γµ(∂µ + ieAµ)ψ −mψ̄ψ

● Under a phase transformation ψ → ψ′ = eiφ(x)ψ, we have

LD → iψ̄′γµ(∂µ + ieAµ − i∂µφ)ψ′ −mψ̄′ψ′

● Invariance under phase transformations of the fermions thus requires a
compensating gauge transformation of the e.m. field

Aµ → A′µ = Aµ + ∂µχ = Aµ − ∂µφ/e
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i.e. χ(x) = −φ(x)/e. Conversely, gauge invariance of the whole Lagrangian will
be preserved provided we simultaneously change the phase of the fermion field

ψ → ψ′ = e−ieχ(x)ψ

● Gauge transformations of e.m. field ⇒ phase transformation of (charged) Dirac
field.

● Conversely, if we demand symmetry of L under local (xµ-dependent) phase
transformations of ψ, this requires the existence of a (massless) vector field to
cancel the term involving ∂µφ(x).

● The gauge symmetry occurs because the derivative ∂µ only appears in the
combination called the covariant derivative

Dµ = ∂µ + ieAµ

Then Dµψ transforms in the same way as ψ itself:

D′
µψ′ = [∂µ + ieAµ + ie(∂µχ)]e−ieχψ = e−ieχDµψ
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● Note that Lem also involves only Dµ since

Fµν = ∂µAν − ∂νAµ = DµAν −DνAµ

● Recall that e.m. phase (gauge) symmetry ⇒ conservation of electric current
and charge (Noether)

● Successive gauge transformations commute:

e−ieχ1e−ieχ2 = e−ieχ2e−ieχ1 = e−ie(χ1+χ2)

This is an Abelian gauge symmetry, with gauge group U(1). Thus quantum
electrodynamics is a U(1) gauge theory.

● It is believed that all fundamental interactions are described by some form of
gauge theory.
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Non-Abelian Gauge Symmetry

● Suppose the Lagrangian involves two fermion fields (e.g. νe and e−) and we
demand symmetry under transformations that mix them together while
preserving normalization and orthogonality:

ψ1 → ψ′1 = αψ1 + βψ2

ψ2 → ψ′2 = γψ1 + δψ2

We require

αα∗ + ββ∗ = γγ∗ + δδ∗ = 1

αγ∗ + βδ∗ = γα∗ + δβ∗ = 0

Hence

Ψ =



 ψ1

ψ2



 → Ψ′ =



 α β

γ δ







 ψ1

ψ2



 ≡ UΨ
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where 

 α β

γ δ







 α∗ γ∗

β∗ δ∗



 =



 1 0

0 1





i.e. UU † = I. Hence the matrix of coefficients U is a unitary matrix.

● U has 4 complex elements satisfying 4 constraints ⇒ 4 real parameters. It can
be written as

U = exp[iα0 + iα1τ1 + iα2τ2 + iα3τ3]

where τ1,2,3 are the Pauli matrices

τ1 =



 0 1

1 0



 , τ2 =



 0 −i

i 0



 , τ3 =



 1 0

0 −1





and α0,1,2,3 are the real parameters.

● The exponential of a matrix A can be defined as

exp[A] = I + A + 1
2A2 + . . .
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Note that in general

exp[A1] exp[A2] %= exp[A2] exp[A1] %= exp[A1 + A2]

⇒ the gauge symmetry group [U(2)] is non-Abelian.

● We can write U = eiα0V where eiα0 ∈ U(1), the Abelian symmetry group, and
V = eiα·τ ∈ SU(2), the non-Abelian group of 2×2 unitary matrices with unit
determinant.

Check:

detU = exp[iTr (α · τ )] = exp[0] = 1

U † = exp[−iα∗ · τ †] = exp[−iα · τ ] = U−1

● The matrices τ1,2,3 are the generators of the group SU(2). An infinitesimal
gauge transformation can be written as

U = eiα·τ ( I + iα · τ
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● In fact we can define the exponential for matrices like this:

eA = lim
N→∞

(
I +

A

N

)N

eiα·τ = lim
ε→0

(I + i ε α · τ )1/ε

● For simplicity we shall usually consider infinitesimal gauge transformations. If
necessary, we can then build up finite ones as above.

● Consider a small SU(2) gauge transformation of the form

Ψ =



 ψ1

ψ2



 → Ψ′ =
(
I + i

g

2
ω(x) · τ

)
Ψ

i.e. α1,2,3 = 1
2g ω1,2,3 small. By analogy with QED, we expect gauge invariance

to require the presence of vector fields W µ
1 , W µ

2 , W µ
3 , coupling to the fermions

via the covariant derivative

Dµ = ∂µ + i
g

2
W µ · τ

LD = iΨγµDµΨ
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N.B. Mass term ∝ ΨΨ to be discussed later.

● What transformation law must W µ
1,2,3 have to make LD gauge invariant? We

need DµΨ to transform just like Ψ itself. Then

D′
µΨ′ =

(
1 + i

g

2
ω · τ

)
DµΨ

Ψ′ = Ψ
(
1− i

g

2
ω · τ

)

⇒ Ψ′γµD′
µΨ′ = ΨγµDµΨ

(up to terms of order ω2, which we are neglecting).

● This implies a more complicated gauge transformation law for W µ
1,2,3. With

Dµ → D′µ = ∂µ + i
g

2
W ′µ · τ

we have
D′µΨ′ =

(
∂µ + i

g

2
W ′µ · τ

) (
1 + i

g

2
ω · τ

)
Ψ

As we have seen, this should equal
(
1 + i

g

2
ω · τ

)
DµΨ =

(
1 + i

g

2
ω · τ

)(
∂µ + i

g

2
W µ · τ

)
Ψ
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Thus

∂µ + i
g

2
W ′µ · τ =

(
1 + i

g

2
ω · τ

)(
∂µ + i

g

2
W µ · τ

) (
1 + i

g

2
ω · τ

)−1

= ∂µ + i
g

2
W µ · τ − i

g

2
(∂µω) · τ

−g2

4
(ωjτjW

µ
k τk −W µ

k τkωjτj) +O(ω2)

Now
τjτk − τkτj = 2i εjkl τl

Hence
W ′µ

l = W µ
l − ∂µωl − g εjkl ωjW

µ
k

● To preserve gauge invariance we have introduced gauge fields W µ
1,2,3 via the

covariant derivative. Clearly we also have to add a gauge field part LG to the
Lagrangian, to allow propagation of the gauge fields.
❖ We might expect LG to be − 1

4Fµν
j Fjµν where

Fµν
j = ∂µW ν

j − ∂νW µ
j , by analogy with QED.

But this is not gauge invariant!
10



❖ From transformation law for W µ
j we have

F ′µν
j = Fµν

j − gεjklωkFµν
l − g εjkl [(∂µωk)W ν

l − (∂νωk)W µ
l ]

and so

− 1
4F ′µν

j F ′jµν = − 1
4Fµν

j Fjµν +
g

2
εjklF

µν
j [(∂µωk)Wlν − (∂νωk)Wµl ]

using antisymmetry of εjkl and neglecting terms of order ω2.

● To get rid of the extra term we must define

LG = − 1
4Gµν

j Gjµν

where
Gµν

j = ∂µW ν
j − ∂νW µ

j − g εjklW
µ
k W ν

l

● Notice that LG now contains terms that represent self-interactions of the
gauge fields:
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− 1
2gεjkl

(
∂µW ν

j − ∂νW µ
j

)
WkµWlν ⇒ W1W2W3 vertex

w

w

w

2

1

3

− 1
4g2εjklεjmnW µ

k W ν
l WmµWnν ⇒ WkWlWkWl vertices

w

w

w

w

k l

lk
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Weak Interactions

● We can use a two-component notation to represent the two charge states of a
given species of lepton or quark:

Ψe =



 ψνe

ψe



 , Ψq =



 ψu

ψd





● Then the weak interaction is described by an SU(2) gauge theory: the gauge
invariance w.r.t. Ψ → Ψ′ = UΨ is weak isospin symmetry.

● The interaction term is g
2ΨγµW µ · τΨ where

Ψe =



 ψνe

ψe



 , Ψe =
(
ψ̄νe , ψ̄e

)
, W µ · τ =



 W µ
3 W µ

1 − iW µ
2

W µ
1 + iW µ

2 −W µ
3





Defining

W± =
1√
2
(W1 ∓ iW2)
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we get a term g√
2
ψ̄νeγ

µW+
µ ψe ⇒

w
g
2-i

e-e

γ µ

ν

+

● We know from experiment that the W± in fact only interact with the
left-handed fermion states ψL = 1

2 (1− γ5)ψ and correspondingly with
right-handed antifermions:

(ψ̄)R = ψL = 1
2 ψ̄(1 + γ5)

● Thus by Ψ we really mean ΨL:

ΨLγµW µ · τΨL = 1
4Ψ(1 + γ5)γµW µ · τ (1− γ5)Ψ

= 1
4Ψγµ(1− γ5)2W µ · τΨ

= 1
2Ψγµ(1− γ5)W µ · τΨ

using (1− γ5)2 = 1 + (γ5)2 − 2γ5 = 2(1− γ5).
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γµγ22

w

νeeR

(1−-i
g

w

νe
Le

5)

+

+

● We say that the left-handed fermions have weak isospin Iw = 1
2 (⇒ 2Iw + 1 = 2

states, e.g. νe, e
−
L ), transforming under weak isospin gauge transformations as

ΨL =



 ψL1

ψL2



 → eig 1
2 ω·τ ΨL

● The right-handed fermions have Iw = 0, i.e. only 1 state (e−R), invariant under
weak isospin transformations:

ψR → e0ψR = ψR
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● This is all fine except that it implies that fermions cannot have mass! The
mass term in the Lagrangian is

mψ̄ψ = 1
4mψ̄(1− γ5)(1− γ5)ψ + 1

4mψ̄(1 + γ5)(1 + γ5)ψ

= mψRψL + mψLψR

● Since ψR and ψR do not transform while ψL and ψL do, this is clearly not
gauge invariant (unless m = 0). We postpone this problem for the moment. . .
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Electroweak Interactions
S. Glashow, S. Weinberg, A. Salam, 1961–68

● We interpreted (W1 ∓ iW2)/
√

2 as W± boson fields, but what about W3?
Could it represent the Z0 boson?

❖ It has the right kind of vertices:

Le-
νe

νe

Le-
ww3 3

❖ However, the Z0 also interacts with right-handed electrons. Also is has a
different mass from W±, so they cannot belong in an exact symmetry
multiplet (a weak isospin triplet, Iw = 1).

● But there is another neutral gauge boson, the photon. Therefore we suppose
that W3 may be a mixture:

W µ
3 = cos θwZµ + sin θwAµ
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Here θw is the Weinberg angle or weak mixing angle

sin2 θw = 0.23117(16)

● The combination orthogonal to W3 is

Bµ = − sin θwZµ + cos θwAµ

In the Standard Model, Bµ is the gauge boson field for an additional Abelian
gauge symmetry. Thus the overall electroweak symmetry is SU(2)×U(1).

● The coupling constant for the U(1) gauge interaction is g′ %= g. The coupling
of any fermion to Bµ is proportional to its weak hypercharge, Y , defined by

Y = Q− I3

where Q is the charge (in units of |e|) and I3 is the third component of the
weak isospin, i.e. ± 1

2 for the upper/lower component of a weak isospin doublet
(Iw = 1

2 ) and 0 for a singlet (Iw = 0).
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Electroweak Quantum Numbers
Particles Q I3 Y

νeL, νµL, ντL 0 1
2 − 1

2

eL, µL, τL −1 − 1
2 − 1

2

νeR, νµR, ντR 0 0 0

eR, µR, τR −1 0 −1

uL, cL, tL + 2
3

1
2

1
6

dL, sL, bL − 1
3 − 1

2
1
6

uR, cR, tR + 2
3 0 2

3

dR, sR, bR − 1
3 0 − 1

3

N.B. Hypercharge is the average charge of the weak isospin multiplet.

● Weak isospin doublets are


 νe

eL



 ,



 νµ

µL



 ,



 ντ

τL



 ,



 uL

dL



 ,



 cL

dL



 ,



 tL

bL
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● The electroweak Lagrangian becomes

LEW = − 1
4Gµν

j Gjµν − 1
4BµνBµν + iΨγµDµΨ

where Bµν = ∂µBν − ∂νBµ and now

Dµ = ∂µ + igW µ · I + ig′BµY

with I = 1
2τ for doublets (0 for singlets), and Y is as given in the table.

● General gauge transformation is

Ψ → Ψ′ = exp (igω · I + ig′ω0Y ) Ψ

where ω0,...,3 are 4 arbitrary real functions of the space-time coordinates xµ.

● The terms in LEW involving the neutral gauge bosons are

−Ψγµ
[
g(cos θw Zµ + sin θw Aµ)I3 + g′(− sin θw Zµ + cos θw Aµ)Y

]
Ψ

Hence the coupling to the photon is g sin θw I3 + g′ cos θw Y , which must be
equal to eQ = e I3 + e Y

⇒ g sin θw = g′ cos θw = e
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● Note that since Q is the same for left- and right-handed states, the photon
couples to the currents

ψ̄LγµψL + ψ̄RγµψR

= 1
2 ψ̄γµ(1− γ5)ψ + 1

2 ψ̄γµ(1 + γ5)ψ

= ψ̄γµψ

Hence photon interactions are parity conserving (no γ5).

● The coupling of the Z0, on the other hand,

g cos θw I3 − g′ sin θw Y =
e

sin θw cos θw

(
cos2 θw I3 − sin2 θw Y

)

=
2e

sin 2θw

(
I3 − sin2 θw Q

)

involves a current that contains γ5 ⇒ parity violation.

ψ̄Lγµ(I3L − sin2 θw Q)ψL + ψ̄Rγµ(− sin2 θw Q)ψR

= 1
2 ψ̄γµ[(I3L − sin2 θw Q)(1− γ5)− sin2 θw Q(1 + γ5)]ψ

= 1
2 ψ̄γµ(I3L − 2Q sin2 θw − I3Lγ5)ψ
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The Higgs Mechanism
● The electroweak theory we have discussed so far is perfectly self-consistent but

it cannot be correct because all the fermions and gauge bosons have to be
massless to preserve gauge-invariance of the Lagrangian.

● Recall that a fermion mass term would convert left-handed particles into
right-handed ones and vice-versa:

mψ̄ψ = mψRψL + mψLψR

● Since the left-handed fermions are weak isospin doublets and the right-handed
ones are singlets, we need to replace m by a doublet (Iw = 1

2 ) type of quantity
to restore gauge invariance, e.g. a Yukawa interaction

gfΦ†ψRΨL + gfΨLψRΦ

where Φ =



 φ1

φ2



 is a weak isospin doublet of scalar fields.
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● For first-generation leptons, for example, we find

geφ
†
1ψ̄eRψνe + geφ

†
2ψ̄eRψeL + h.c.

and thus for an electron mass we need

Φ0 =



 φ1

φ2



 =



 0

v/
√

2





with gev/
√

2 = me.

● Φ0 is the vacuum expectation value of the Higgs field Φ. Note that φ2 must be
neutral, with

Q = 0 , I3 = − 1
2 ⇒ YHiggs = 1

2

Then φ1 must have Q = +1, so in general


 φ1

φ2



 =



 φ+

φ0
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● Of course, the particular choice of Φ0 =



 0

v/
√

2



 breaks gauge invariance,

so we do not seem to have achieved much. But we shall see that this type of
symmetry breaking is ‘natural’, and does not spoil the good properties of
gauge theories.

● The interactions between the Higgs field and the gauge fields are generated by
the usual ‘kinetic’ term in the Higgs (Klein-Gordon) part of the Lagrangian

LH =
(
DµΦ†) (DµΦ) + . . . (see later)

where Dµ is the electroweak covariant derivative,

Dµ = ∂µ + igW µ · I + ig′BµY

● For the vacuum Higgs field we have explicitly (since v is constant)

DµΦ0 =
iv

2
√

2




√

2gW+µ

g′Bµ − gW µ
3
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Now

g′Bµ − gW µ
3 =

g

cos θw
(sin θw Bµ − cos θw W µ

3 )

= − g

cos θw
Zµ

Hence

LH =
v2g2

8

(
2W−µW+

µ +
1

cos2 θw
ZµZµ

)
+ . . .

which corresponds to W± and Z0 mass terms

mW = 1
2vg = mZ cos θw

N.B. sin2 θw = 1− m2
W

m2
Z

.
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Parameters of the Standard Model

● Standard (Glashow-Weinberg-Salam) Model describes electroweak interactions
at present energies in terms of three parameters g, g′ (or θw), v.

● These are most accurately measured from

❖ the fine structure constant

α =
e2

4π
=

g2 sin2 θw

4π
= {137.03599976(50)}−1

❖ the Fermi weak coupling constant

GF =
g2
√

2
8m2

W

=
1√
2v2

= 1.16639(1)× 10−5 GeV−2

❖ the Z0 boson mass

MZ =
gv

2 cos θw
= 91.1882(22) GeV
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N.B. These relations are subject to higher-order (electroweak and strong)
corrections.

● In addition there are further parameters of the Higgs sector, including Yukawa
couplings.

● The Fermi constant is the effective 4-fermion coupling for the decay
µ− → e− + ν̄e + νµ

e e
-

νe

ν

µ

µ

-
-m2W2q
-i

mq2 2
W

µ

νµ

νe

-

2
G

g
2
-i

-i g
2

2

2

- w -

F-i

GF = 1.166× 10−5 GeV−2 ⇒ v = 246 GeV
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● The Yukawa couplings can be deduced from the fermion masses:

gf = mf

√
2

v

The numerical values of the Yukawa couplings (and thus the fermion masses)
are presently not understood (1 parameter per fermion).

N.B. mt = 175 GeV ⇒ gt = 1.0.

Is this accidental??
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Spontaneous Symmetry Breaking

● The advantage of the Higgs mechanism for mass generation is that the
gauge-symmetry-breaking vacuum Higgs field Φ0 can arise ‘spontaneously’,
even though the Lagrangian is exactly gauge-invariant.

● Let’s study first for simplicity the spontaneous breaking of a global (i.e.
space-time independent) Abelian symmetry. Consider a classical complex
scalar field φ with Lagrangian density

L = (∂µφ∗)(∂µφ)− µ2φ∗φ− λ(φ∗φ)2

Clearly L is invariant w.r.t.

φ → eiαφ , φ∗ → e−iαφ∗

for any real constant α.

● The Hamiltonian density is

H =
∣∣∣∣
∂φ

∂t

∣∣∣∣
2

+∇φ∗ ·∇φ + V (φ)
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where the ‘potential energy’ V (φ) is

V (φ) = µ2|φ|2 + λ|φ|4

Im
Re

V

φ

φ

❖ This potential has a minimum at the origin and hence the minimum-energy
(vacuum) state has φ = 0 (classically).

❖ After second quantization there will be zero-point fluctuations, but the
vacuum expectation value φ0 = 〈0|φ̂|0〉 will still be zero.

❖ The curvature of V (φ) at the minimum tells us the mass of the scalar
bosons created and annihilated by the field operator (c.f. Klein-Gordon
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equation):

m2 =
1
2

d2V

dφ2

∣∣∣∣
φ=φ0

= µ2

❖ The term λ|φ|4 represents a 4-boson interaction that can be treated as a
perturbation (coupling constant ∝ λ).

● Now suppose we change the sign of the first term in V (φ):

V = −µ2|φ|2 + λ|φ|4

Im
Re

V

φ

φ
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❖ The potential has a ‘hump’: the minimum now lies anywhere on the circle

φ =

√
µ2

2λ
eiθ (0 ≤ θ ≤ 2π)

❖ The physical vacuum can be any one of these (infinitely many) degenerate
vacua. But choosing a particular one (a value of θ) breaks the U(1)
symmetry, since eiαφ will be a different vacuum (c.f. a falling rod or
ferromagnet). Since a particular vacuum is realized, there is spontaneous
symmetry breaking.

❖ The two principal curvatures of V (φ) at the vacuum solution are now
different. One is zero (around the circle), indicating a massless boson (a
Goldstone boson), in agreement with Goldstone’s theorem (1961):
Spontaneous breaking of global symmetry ⇒ massless boson.
N.B. We shall see this is not true in gauge theories.

❖ The other curvature (radial) is non-zero, indicating that a massive boson is
also present.
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● Without loss of generality (because of gauge invariance) we can define the
vacuum expectation value to be real:

φ0 =
v√
2

, v =

√
µ2

λ

Then setting

φ =
1√
2
[v + σ(x) + iη(x)]

we expect σ and η to represent massive and massless boson fields, respectively.

● Substituting in the Lagrangian, we find

L = 1
2 [(∂µσ)(∂µσ) + (∂µη)(∂µη)]

+ 1
2µ2[(v + σ)2 + η2]− 1

4λ[(v + σ)2 + η2]2

= 1
2 [(∂µσ)(∂µσ)−m2

σσ2] + 1
2 (∂µη)(∂µη)

+ const. + interaction terms

where mσ =
√

2µ.
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● Now suppose our model scalar field theory is a U(1) gauge theory (Higgs
model, 1964), i.e. the Lagrangian is invariant w.r.t.

φ → eiα(x)φ , φ∗ → e−iα(x)φ∗

for any real function α(x). We know this means there must be a gauge field
Bµ(x) and the Lagrangian becomes

L = − 1
4BµνBµν + Dµφ∗Dµφ + µ2φ∗φ− λ(φ∗φ)2

where

Bµν = ∂µBν − ∂νBµ

Dµ = ∂µ + ig′Y Bµ

Y being the corresponding hypercharge.

● The spontaneous symmetry breaking in the Higgs field φ works as before,
giving a vacuum with Bµ = 0, φ = φ0 %= 0. Choosing φ0 = v/

√
2 (real), this

generates a mass term for the gauge boson corresponding to mB = g′Y v:

1
2 (Dµv)(Dµv) = 1

2 (g′Y v)2BµBµ
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● We seem to have created a degree of freedom: a massive vector field (S=1) has
3 polarization states in contrast to the 2 of a massless field. Longitudinal
polarization (helicity 0) is possible, as well as transverse (helicity ±1).

● This is because one degree of freedom of the Higgs field has disappeared. In a
gauge theory we can always set the massless field η(x) to zero by a gauge
transformation: choosing

tanα(x) = − η(x)
v + σ(x)

we have

φ′ = eiαφ = (cosα + i sinα)
1√
2
(v + σ + iη)

=
1√
2

√
(v + σ)2 + η2 =

1√
2
(v + σ′)

where σ′ = σ +
η2

2v
+ . . . = real

(This is called the ‘unitary gauge’.)
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● Thus we can say that the gauge field has ‘eaten’ the Goldstone boson in order
to create its extra polarization state.

● The situation in the electroweak case is a little more complicated. The original
SU(2)×U(1) symmetry (with 4 generators) is spontaneously broken down to
U(1)em [not the original U(1)], with 1 generator. There should thus be 3
Goldstone bosons, but these are eaten by the W+, W− and Z0 to produce
their longitudinal polarization states. This leave one massless gauge boson –
the photon – and one massive, neutral scalar boson – the Higgs boson.
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Properties of the Higgs Boson
● Note that the mass of the Higgs boson H0, represented by the field σ, is

MH = mσ =
√

2µ .

This is not determined directly by current data, which fixes only the
combination of Higgs parameters

v =
µ√
λ

= 246 GeV

● The fact that Higgs bosons were not (?) produced at LEP implies

MH > 114.1 GeV (95% C.L.)

● Higher-order corrections depend (weakly) on µ and these suggest that

MH <∼ 200 GeV
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● Latest results from the LEP Electroweak Working Group:

160

180

200

10 10 2 10 3

mH  [GeV]

m
t  
[G

eV
]

Excluded

High Q2 except mt
68% CL

mt (Tevatron)
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0

1

2

3

4

5

6

10030 500
mH [GeV]

Δ
χ2

Excluded

Δαhad =Δα(5)

0.02761±0.00036
0.02749±0.00012
incl. low Q2 data

Theory uncertainty
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● The couplings of the Higgs boson to fermions are all given by the
corresponding Yukawa couplings, which are fixed by the fermion masses:

gf
1√
2
(v + σ)ψ̄ψ

⇒ mf = gf
v√
2

⇒ vertex factor

−i
gf√

2
= −i

mf

v

ψ

ψ

● Thus the Higgs boson likes to decay into (and be produced by) the heaviest
available fermion, H0 → bb̄ if MH < 2mt.

● The coupling to gauge bosons is obtained by replacing v by (v + σ) in the term
that produced the gauge boson masses:

LH =
(v + σ)2

8
g2

(
2W−µW+

µ +
1

cos2 θw
ZµZµ

)

=
(
M2

W + 1
2vg2σ + 1

4g2σ2
)
W−µW+

µ
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+ 1
2

(
M2

Z +
vg2

2 cos2 θw
σ +

g2

4 cos2 θw
σ2

)
ZµZµ

corresponding to the vertices:

ivg2gµν1
2

W

W Z

Z

gµνig21
2

gµν
θ

ig2
W

gµν
θW

2

W

W Z

Z

2

ivg
2cos2

cos2

● Thus decays to W+W− and Z0Z0 are expected if MH is large enough.
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● Branching ratios of the Higgs boson to various final states:
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