Quantum electrodynamics (QED)

Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\Psi} \not \partial \Psi-m \bar{\Psi} \Psi+e \bar{\Psi} \gamma^{\mu} \Psi A_{\mu}
$$

$e=-0.302822$
$\alpha=e^{2} / 4 \pi=1 / 137.036$
Noether current of the
lagrangian for a free Dirac field $j^{\mu}(x)=e \bar{\Psi}(x) \gamma^{\mu} \Psi(x)$

$$
\partial_{\mu} j^{\mu}(x)=\delta \mathcal{L}(x)-\frac{\delta S}{\delta \varphi_{a}(x)} \delta \varphi_{a}(x)
$$

we want the current to be conserved and so we need to enlarge the gauge transformation also to the Dirac field:

$$
A^{\mu}(x) \rightarrow A^{\mu}(x)-\partial^{\mu} \Gamma(x)
$$

global symmetry is

$$
\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x),
$$

promoted into local
$\Psi \rightarrow e^{-i \alpha} \Psi$

$$
\bar{\Psi}(x) \rightarrow \exp [+i e \Gamma(x)] \bar{\Psi}(x) .
$$

symmetry of the lagrangian and so the current is
$\bar{\Psi} \rightarrow e^{+i \alpha} \bar{\Psi}$ conserved no matter if equations of motion are satisfied

We can write the QED lagrangian as:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\Psi} \not D \Psi-m \bar{\Psi} \Psi \\
D_{\mu} \equiv \partial_{\mu}-i e A_{\mu}
\end{gathered}
$$

covariant derivative (the covariant derivative of a field transforms as the field itself)

$$
\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x)
$$

$$
D_{\mu} \Psi(x) \rightarrow \exp [-i e \Gamma(x)] D_{\mu} \Psi(x)
$$

and so the lagrangian is manifestly gauge invariant!
Proof:

$$
\begin{aligned}
D_{\mu} \Psi & \rightarrow\left(\partial_{\mu}-i e\left[A_{\mu}-\partial_{\mu} \Gamma\right]\right)(\exp [-i e \Gamma] \Psi) \\
& =\exp [-i e \Gamma]\left(\partial_{\mu} \Psi-i e\left(\partial_{\mu} \Gamma\right) \Psi-i e\left[A_{\mu}-\partial_{\mu} \Gamma\right] \Psi\right) \\
& =\exp [-i e \Gamma]\left(\partial_{\mu}-i e A_{\mu}\right) \Psi \\
& =\exp [-i e \Gamma] D_{\mu} \Psi .
\end{aligned}
$$

$$
\begin{array}{r}
\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x) \\
D_{\mu} \Psi(x) \rightarrow \exp [-i e \Gamma(x)] D_{\mu} \Psi(x)
\end{array}
$$

We can also define the transformation rule for D :

$$
D_{\mu} \rightarrow e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}
$$

then

$$
\begin{aligned}
D_{\mu} \Psi & \rightarrow\left(e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}\right)\left(e^{-i e \Gamma} \Psi\right) \\
& =e^{-i e \Gamma} D_{\mu} \Psi,
\end{aligned}
$$

Now we can express the field strength in terms of D's:

$$
D_{\mu} \equiv \partial_{\mu}-i e A_{\mu}
$$

$$
\left[D^{\mu}, D^{\nu}\right] \Psi(x)=-i e F^{\mu \nu}(x) \Psi(x)
$$

$$
F^{\mu \nu}=\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]
$$

$$
\begin{array}{r}
F^{\mu \nu}=\frac{i}{e}\left[D^{\mu}, D^{\nu}\right] \\
D_{\mu} \rightarrow e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}
\end{array}
$$

Then we simply see:

$$
\begin{aligned}
F^{\mu \nu} & \rightarrow \frac{i}{e}\left[e^{-i e \Gamma} D^{\mu} e^{+i e \Gamma}, e^{-i e \Gamma} D^{\nu} e^{+i e \Gamma}\right] \\
& =e^{-i e \Gamma}\left(\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]\right) e^{+i e \Gamma} \\
& =e^{-i e \Gamma} F^{\mu \nu} e^{+i e \Gamma} \\
& =F^{\mu \nu}
\end{aligned}
$$

no derivatives act on exponentials

Nonabelian symmetries

Let's generalize the theory of two real scalar fields:

$$
\mathcal{L}=-\frac{1}{2} \partial^{\mu} \varphi_{1} \partial_{\mu} \varphi_{1}-\frac{1}{2} \partial^{\mu} \varphi_{2} \partial_{\mu} \varphi_{2}-\frac{1}{2} m^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\frac{1}{16} \lambda\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2}
$$

to the case of N real scalar fields:

$$
\mathcal{L}=-\frac{1}{2} \partial^{\mu} \varphi_{i} \partial_{\mu} \varphi_{i}-\frac{1}{2} m^{2} \varphi_{i} \varphi_{i}-\frac{1}{16} \lambda\left(\varphi_{i} \varphi_{i}\right)^{2}
$$

the lagrangian is clearly invariant under the $\mathrm{SO}(\mathrm{N})$ transformation:
lagrangian has also the Z_{2} symmetry, $\varphi_{i}(x) \rightarrow-\varphi_{i}(x)$, that enlarges $\mathrm{SO}(\mathrm{N})$ to $\mathrm{O}(\mathrm{N})$
infinitesimal $\mathrm{SO}(\mathrm{N})$ transformation:

$$
R_{i j}=\delta_{i j}+\theta_{i j}+O\left(\theta^{2}\right) \quad \begin{array}{rr}
R^{1}=R^{-1} \\
R_{i j}^{T}=\delta_{i j}+\theta_{j i} \\
R_{i j}^{-1}=\delta_{i j}=\theta_{i j}
\end{array}
$$

real

$$
\operatorname{Im}\left(R^{-1} R\right)_{i j}=\operatorname{Im} \sum_{k} R_{k i} R_{k j}=0
$$

$\left(\mathrm{N}^{\wedge} 2\right.$ linear combinations of $\stackrel{k}{k} \mathrm{~m}$ parts $\left.=0\right)$
there are $\frac{1}{2} N(N-1)$ linearly independent real antisymmetric matrices, and we can write:

$$
\theta_{j k}=-i \theta^{a}\left(T^{a}\right)_{j k}
$$

hermitian, antisymmetric, $\mathrm{N} \times \mathrm{N}$

or $R=e^{-i \theta^{a} T^{a}}$.
The commutator of two generators is a lin. comb. of generators:

$$
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}
$$

we choose normalization: $\operatorname{Tr}\left(T^{a} T^{b}\right)=\underset{\text { structure constants of the } \mathrm{SO}(\mathrm{N}) \text { group }}{2 \delta^{a b}} f^{a b d}=-\frac{1}{2} i \operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{d}\right)$
e.g. SO(3):

$$
\left(T^{a}\right)_{i j}=-i \varepsilon^{a i j}
$$

$$
\left[T^{a}, T^{b}\right]=i \varepsilon^{a b c} T^{c}
$$

$$
\uparrow_{\text {Levi-Civita symbol }}^{\uparrow}
$$

$$
\varepsilon^{123}=+1
$$

consider now a theory of N complex scalar fields:

$$
\mathcal{L}=-\partial^{\mu} \varphi_{i}^{\dagger} \partial_{\mu} \varphi_{i}-m^{2} \varphi_{i}^{\dagger} \varphi_{i}-\frac{1}{4} \lambda\left(\varphi_{i}^{\dagger} \varphi_{i}\right)^{2}
$$

the lagrangian is clearly invariant under the $U(N)$ transformation:

$$
\begin{gathered}
\varphi_{i}(x) \rightarrow U_{i j} \varphi_{j}(x) \\
U^{\dagger}=U^{-1}
\end{gathered}
$$

we can always write $U_{i j}=e^{-i \theta} \tilde{U}_{i j}$ so that $\operatorname{det} \tilde{U}^{-}=+1$.
actually, the lagrangian has larger symmetry, $\mathrm{SO}(2 \mathrm{~N})$:
$\varphi_{j}=\left(\varphi_{j 1}+i \varphi_{j 2}\right) / \sqrt{2}$
$\varphi_{j}^{\dagger} \varphi_{j}=\frac{1}{2}\left(\varphi_{11}^{2}+\varphi_{12}^{2}+\ldots+\varphi_{N 1}^{2}+\varphi_{N 2}^{2}\right)$
infinitesimal $\mathrm{SU}(\mathrm{N})$ transformation:

$$
\tilde{U}_{i j}=\delta_{i j}-i \theta^{a}\left(T^{a}\right)_{i j}+O\left(\theta^{2}\right)
$$

$$
U^{\dagger}=U^{-1}
$$

$$
\text { or } \tilde{U}=e^{-i \theta^{a} T^{a}}
$$

$$
\operatorname{det} \tilde{U}=+1
$$

$\ln \operatorname{det} A=\operatorname{Tr} \ln A$
there are $N^{2}-1$ linearly independent traceless hermitian matrices:

$$
\begin{gathered}
{\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}} \\
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}
\end{gathered}
$$

e.g. $S U(2)-3$ Pauli matrices
the structure coefficients

$$
\text { are } \quad f^{a b c}=2 \varepsilon^{a b c}
$$ the same as for $\mathrm{SO}(3)$

Nonabelian gauge theory

based on S-69
Consider a theory of N scalar or spinor fields that is invariant under:

$$
\phi_{i}(x) \rightarrow U_{i j} \phi_{j}(x)
$$

for $\mathrm{SU}(\mathrm{N})$: a special unitary NxN matrix for $\mathrm{SO}(\mathrm{N})$: a special orthogonal $\mathrm{N} \times \mathrm{N}$ matrix

In the case of $U(I)$ we could promote the symmetry to local symmetry but we had to include a gauge field $A_{\mu}(x)$ and promote ordinary derivative to covariant derivative:

$$
\begin{aligned}
& \phi(x) \rightarrow U(x) \phi(x) \quad U(x)=\exp [-i e \Gamma(x)] \quad D_{\mu}=\partial_{\mu}-i e A_{\mu} \\
& D_{\mu} \rightarrow U(x) D_{\mu} U^{\dagger}(x)
\end{aligned}
$$

then the kinetic terms and mass terms: $-\left(D_{\mu} \varphi\right)^{\dagger} D^{\mu} \varphi, m^{2} \varphi^{\dagger} \varphi, i \bar{\Psi} D \Psi$ and $m \bar{\Psi} \Psi$, are gauge invariant. The transformation of covariant derivative in general implies that the gauge field transforms as:

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{e} U(x) \partial_{\mu} U^{\dagger}(x) \\
& \text { for } \cup(\mathrm{I}): A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \Gamma(x)
\end{aligned}
$$

Now we can easily generalize this construction for $\mathrm{SU}(\mathrm{N})$ or $\mathrm{SO}(\mathrm{N})$: an infinitesimal $\mathrm{SU}(\mathrm{N})$ transformation:

the $\mathrm{SU}(\mathrm{N})$ gauge field is a traceless hermitian NxN matrix transforming as:

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x) \\
& U(x)=\exp \left[-i g \Gamma^{a}(x) T^{a}\right]
\end{aligned}
$$

the covariant derivative is:
or acting on a field:

$$
D_{\mu}=\partial_{\mu}-i g A_{\mu}(x)
$$

$$
\left(D_{\mu} \phi\right)_{j}(x)=\partial_{\mu} \phi_{j}(x)-i g A_{\mu}(x)_{j k} \phi_{k}(x)
$$

using covariant derivative we get a gauge invariant lagrangian
We define the field strength (kinetic term for the gauge field) as:

$$
\begin{aligned}
F_{\mu \nu}(x) & \equiv \frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \\
& =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

it transforms as:

$$
D_{\mu} \rightarrow U(x) D_{\mu} U^{\dagger}(x)
$$

$$
F_{\mu \nu}(x) \rightarrow U(x) F_{\mu \nu}(x) U^{\dagger}(x)
$$

not gauge invariant separately
and so the gauge invariant kinetic term can be written as:

$$
\mathcal{L}_{\mathrm{kin}}=-\frac{1}{2} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right)
$$

we can expand the gauge field in terms of the generator matrices:

$$
A_{\mu}(x)=A_{\mu}^{a}(x) T^{a}
$$

that can be inverted:

$$
A_{\mu}^{a}(x)=2 \operatorname{Tr} A_{\mu}(x) T^{a}
$$

similarly:

$$
\begin{aligned}
& F_{\mu \nu}(x)=F_{\mu \nu}^{a} T^{a} \\
& F_{\mu \nu}^{a}(x)=2 \operatorname{Tr} F_{\mu \nu} T^{a} .
\end{aligned}
$$

$F_{\mu \nu}(x) \equiv \frac{i}{g}\left[D_{\mu}, D_{\nu}\right]$

$$
\begin{aligned}
&=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right] \longrightarrow F_{\mu \nu}^{c} T^{c}=\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}\right) T^{c}-i g A_{\mu}^{a} A_{\nu}^{b}\left[T^{a}, T^{b}\right] \\
& {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} }
\end{aligned} \longrightarrow\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}\right) T^{c} .
$$

thus we have:

$$
F_{\mu \nu}^{c}=\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}
$$

$$
\begin{array}{r}
\mathcal{L}_{\text {kin }}=-\frac{1}{2} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right) \\
F_{\mu \nu}(x)=F_{\mu \nu}^{a} T^{a}
\end{array}
$$

the kinetic term can be also written as:

$$
\begin{aligned}
\mathcal{L}_{\text {kin }}=-\frac{1}{4} F^{c \mu \nu} F_{\mu \nu}^{c} & \\
& F_{\mu \nu}^{c}=\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}
\end{aligned}
$$

Example, quantum chromodynamics - QCD:

$$
\mathcal{L}=i \bar{\Psi}_{i I} D_{i j} \Psi_{j I}-m_{I} \bar{\Psi}_{I} \Psi_{I}-\frac{1}{2} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right)
$$

color index: I,2, 3
in general, scalar and spinor fields can be in different representations of the group, T_{R}^{a}; gauge invariance requires that the gauge fields transform independently of the representation.

