
Quantum electrodynamics (QED)
based on S-58

Quantum electrodynamics is a theory of photons interacting with the 
electrons and positrons of a Dirac field:

Noether current of the 
lagrangian for a free Dirac field

we want the current to be conserved and so we need to enlarge the gauge 
transformation also to the Dirac field:

symmetry of the lagrangian and so the current is 
conserved no matter if equations of motion are satisfied

global symmetry is 
promoted into localREV
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We can write the QED lagrangian as:

covariant derivative
(the covariant derivative of a field transforms as the field itself)

Proof:

and so the lagrangian is manifestly gauge invariant!
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We can also define the transformation rule for D:

then

as required.

Now we can express the field strength in terms of D’s:
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Then we simply see:

the field strength is gauge invariant as we already knew

no derivatives act on 
exponentialsREV
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lagrangian has also the     symmetry,                      , that enlarges SO(N) to O(N)

Nonabelian symmetries
based on S-24

Let’s generalize the theory of two real scalar fields:

to the case of N real scalar fields:

the lagrangian is clearly invariant under the SO(N) transformation:
orthogonal matrix with det = 1
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we choose normalization:

or                     .

there are               linearly independent real antisymmetric 
matrices, and we can write:

infinitesimal SO(N) transformation:

RT
ij = δij + θji

R−1
ij = δij − θij

Im(R−1R)ij = Im
∑

k

RkiRkj = 0

antisymmetric

(N^2  linear combinations of Im parts  = 0)

real

hermitian, antisymmetric, NxN

R = e−iθaT a

generator matrices of  SO(N)

The commutator of two generators is a lin. comb. of generators:

structure constants of the SO(N) group
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e.g. SO(3):

Levi-Civita symbol
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we can always write                    so that                  .

consider now a theory of N complex scalar fields:

the lagrangian is clearly invariant under the U(N) transformation:

group of unitary 
NxN matrices

SU(N) - group of special 
unitary NxN matrices

U(N) = U(1) x SU(N)

actually, the lagrangian has 
larger symmetry, SO(2N):REV
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or                     .

there are            linearly independent traceless hermitian matrices:

infinitesimal SU(N) transformation:
hermitian

traceless

Ũ = e−iθaT a

e.g. SU(2) - 3 Pauli matrices

      SU(3) - 8 Gell-Mann matrices
the structure coefficients 

are                   ,         
the same as for SO(3)REV
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then the kinetic terms and mass terms:                    ,             ,            and           ,                           
are gauge invariant. The transformation of covariant derivative in general implies that 
the gauge field transforms as:

Nonabelian gauge theory
based on S-69

Consider a theory of N scalar or spinor fields that is invariant under: 

for SO(N): a special orthogonal NxN matrix
for SU(N): a special unitary NxN matrix

In the case of U(1) we could promote the symmetry to local symmetry but we had to 
include a gauge field           and promote ordinary derivative to covariant derivative:

for U(1):
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Now we can easily generalize this construction for SU(N) or SO(N):

an infinitesimal SU(N) transformation:

generator matrices 
(hermitian and traceless):

gauge coupling constant

structure constants 
(completely antisymmetric)

from     to 
from     to 

the SU(N) gauge field is a traceless hermitian NxN matrix transforming as:
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the covariant derivative is:

NxN identity matrixor acting on a field:

using covariant derivative we get a gauge invariant lagrangian

We define the field strength (kinetic term for the gauge field) as:

a new term

it transforms as:

and so the gauge invariant kinetic term can be written as:
not gauge invariant separately
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we can expand the gauge field in terms of the generator matrices:

that can be inverted:

similarly:

thus we have:
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the kinetic term can be also written as:

Example, quantum chromodynamics - QCD:

1, ... , 8 gluons
(massles spin 1 particles)

flavor index:
up, down, strange, 
charm, top, bottom

color index: 1,2, 3

in general, scalar and spinor fields can be in different representations of the 
group,        ; gauge invariance requires that the gauge fields transform independently 
of the representation.
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