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The Gauge Principle



The Gauge Principle



The gauge principle
Maxwell’s formulation of electrodynamics was perhaps the
first field theory and a gauge theory in physics.

In 1929, Weyl showed that electrodynamics was invariant
under the gauge transformation of the gauge field and
the wave-function of the charged field.

In 1954, Yang and Mills studied the gauge principle in
non-abelian field theories.



The gauge principle
U(1) and SU(2) local gauge invariance:



Quantum electrodynamics
The free Dirac Lagrangian is:

It is invariant under abelian global U(1) gauge transformation:

where a is a real constant. Find conserved current.

We demand generalizing it into a local gauge symmetry by
demanding the invariance even if a=a(x). The mass term
is still invariant but not the kinetic energy term.



Quantum electrodynamics

The invariance can be reinstated by introducing a gauge field
and a gauge covariant derivative:

e is the fermion coupling to the gauge field.

The starting point now is:

This is invariant under simultaneous gauge transformations
of the fermion and the gauge fields:



Quantum electrodynamics

This invariance is achieved because:

and hence:

The gauge field A = vector potential of Maxwell equations.



Quantum electrodynamics
The wave-function of an electron carries a phase with it.

In global gauge transformation, this phase is changed by the
same amount at every space-time point and the Lagrangian is
invariant.



Quantum electrodynamics

Gauge field with compensating transformation is introduced
to obtain local gauge invariance.

In local gauge transformation, this phase is changed by
arbitrarily different amounts at every space-time point.



SU(N) gauge theory
The free field is described by the Dirac Lagrangian:

It is invariant under the SU(N) transformations, with θa real
constants. Find conserved current.



SU(N) gauge theory

Here ½𝜏a(a=1,2,3, … , N2-1) are n x n matrices in n-dimensional
representation of the SU(N) group.

The structure functions fabc uniquely determine the group
SU(N) in operation.

These matrices obey the following Lie algebra:



SU(3) gauge theory
There are different color phases associated with quarks

In global gauge transformations, they are transformed
independently of x and hence the Lagrangian is invariant.



SU(N) gauge theory

We want to enforce the invariance of the Lagrangian under
local gauge transformations:

We now need (N2-1) gauge fields & the covariant derivative is:



SU(N) gauge theory

The gauge fields must transform as:

so that:

which ensures the invariance of the Lagrangian.



SU(N) gauge theory

proof:



SU(3) gauge theory

Initially:

Local Gauge
transformation:

Compensating
fields restore
gauge invariance



A candidate for the dynamics of the gauge field A in QED is
the vector potential of the Maxwell’s equations:

Fµν is invariant under the gauge transformations:

Recalling quantum electrodynamics



We can easily check the following:

It goes beyond U(1):

Recalling quantum electrodynamics



Recalling quantum electrodynamics
We now want to show the following:

We start from:

This proves the above identity.



Recalling quantum electrodynamics
The two identities are:

Combining these expressions:



As ψ is an arbitrary spinor and exp(-iα(x)) & Fµν commute,
the later being a function, we obtain the gauge invariance
of the field tensor:

So we construct the Lorentz invariant quantity:

And the Lagrangian is:

Recalling quantum electrodynamics



Dynamics of the field tensor
How do we define Fµν for SU(N)?

The following definition does not work:

We can check that with this definition,

is not gauge invariant.

Thus we follow the procedure just outlined. Use the
definition of Fµν as follows and deduce what it is:



Non abelian field tensor 



Dynamics of the field tensor
Is Fµν

a gauge invariant? No.

Show:

Show that Fµν
a Fµna is gauge invariant.

SU(N) Lagrangian:

These terms correspond to self coupling of the gauge field,
triple and quartic gluon interactions.



The QCD Lagrangian
Thus the QCD Lagrangian can be written as (modulus gauge
fixing term and ghosts)

Gluon Fields: Massless, spin 1 bosons, color octet because
the group contains eight generators, flavor singlet (i.e.,
gluons are flavor blind, not distinguishing between flavors
of whatever they interact with).



Feynman rules in covariant gauges
The propagators:



The gluon self interactions:

Feynman rules in covariant gauges



The gluon vertices with ghosts and quarks:

Feynman rules in covariant gauges



Higher orders and infinities
• Electrodynamics was born in 1920s through the works of 
Born, Heisenberg, Dirac, Pauli, Feynman, Schwinger, etc.

• In 1940s, precise measurements of the levels of Hydrogen
atom, Lamb shift and the magnetic moment of the
electron exposed discrepancies between experiment and 
tree level theory.  

• Works of Feynman, Schwinger and Tomonaga [1943-1949]
introduced the concept of renormalization to solve the 
problems of QED. Nobel prize of 1965.  

• Works of F. Bloch, A. Nordsieck (1937) and V. Weiskopf
(1939) revealed QED calculations worked only at first
order in perturbation theory. Infinites emerged at higher
orders.  





According to Dirac and Schrodinger, the atomic states
with the same n and j quantum numbers but different l
quantum numbers ought to be degenerate.

Higher orders and infinities

A famous experiment of Retherford and Lamb in 1947
showed that the states

of the Hydrogen atom were not degenerate.

This effect is explained by perturbative QED.

Lamb Shift:



Higher orders and infinities

Lamb Shift:



Higher orders and infinities

Lamb Shift:



Renormalization in One Hour



Infinities in electromagnetism
Electric potential due to an infinite line charge:

This function U does not 
have dimensions. Such f
functions have possibilities:

L is a problem related scale.



Infinities in electromagnetism
Regularize potential: (i) Cut off method

Electric field intensity:

Repeat steps for potential difference between two points.

This regularized potential has following properties:.

Vreg(r/L) is convergent
Vreg(r/L) is NOT translation invariant



Infinities in electromagnetism
Regularize potential: (i) Dimensional Regularization

Substitute:

Evaluate integral in D dimensions:



Infinities in electromagnetism
Regularize potential: (i) Dimensional Regularization

Electric field is:

This regularized potential has the following properties:

Vreg(r/µ) is convergent
Vreg(r/µ) IS translation invariant



“Renormalization Schemes”

• Expand Vreg(r/µ) in powers of e:

• In MS (minimal subtraction) scheme (Electric potential?)

• In MS (modified minimal subtraction) scheme

• V depends on an additional length scale!

Infinities in electromagnetism



Infinities in QED
• Charge or coupling renormalization:

Physical
Charge

Bare
charge

• Loops introduce divergences which need to be regularized
and renormalized.

• Quantities such as coupling run with momenta.



QED vs QCD



Dimensional regularization
One-loop calculations in QED and QCD involve integrals
which diverge. An example of a divergent integral is:

Introduce some regulator. Regularized diagrams converge.

There exist many regularization methods. Cut-off, Pauli-
Villars, lattice and dimensional regularization.

The regularization should preserve as many symmetries of
the theory as possible, ensuring manipulating regularized
Feynman integrals are simple, etc.

The best choice is the dimensional regularization. Nobel
Prize 1999 (t’Hooft and Veltman).



Massive vacuum diagram

1-loop massive integral with
dimensional regularization

Divergence!

Massless integrals with no
external momentum scale



The massless propagator
diagram with arbitrary
powers:

Expression:

Massless bubble diagram

Finally:



Massless bubble diagram
Ultraviolet divergences:



Massless bubble diagram

Infrared divergences:



What next?
• How can we regularize & renormalize QED at one loop?
• How does the coupling run in QED?

• How can we answer the same questions in QCD?

• What are the consequences of running coupling in QCD and
its infrared enhancement and what are its implications for
hadron physics?


