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ABSTRACT

Gauge invariance 1s the basis of the modern theory of electroweak and strong interactions (the so
called Standard Model). The roots of gauge invariance go back to the year 1820 when
electromagnetism was discovered and the first electrodynamic theory was proposed. Subsequent
developments led to the discovery that different forms of the vector potential result in the same
observable forces. The partial arbitrariness of the vector potential A brought forth various

restrictions on it. 'V - A = 0 was proposed by J. C. Maxwell; ()HALl = () was proposed L. V.

Lorenz in the middle of 1860's . In most of the modern texts the latter condition is attributed to H.
A. Lorentz, who half a century later was the key figure in the final formulation of classical
lelectrodynamics. In 1926 a relativistic equation for charged spinless particles was formulated by k&
Schrodinger, O. Klein, and V. Fock. The latter discovered that this equation is invariant with

espect to multiplication of the wave function by a phase factor exp(iey/hc ) with the
Eccompanying additions to the scalar potential of -dy/cdt and to the vector potential of Vy. In
1929 H. Weyl proclaimed this invariance as a general principle and called it Eichinvarianz in
|German and gauge invariance in English. The present era of non-abelian gauge theories started in
1954 with the paper by C. N. Yang and R. L. Mills.




The gauge principle

Maxwell's formulation of electrodynamics was perhaps the
first field theory and a gauge theory in physics.

Maxwell Formulation of Electrodynamics

| 1864 I
Lorentz Invariance Gauge Symmetry

Theory of Relativity Quantum Mechanics

In 1929, Weyl showed that electrodynamics was invariant
under the gauge transformation of the gauge field and
the wave-function of the charged field.

In 1954, Yang and Mills studied the gauge principle in
non-abelian field theories.



The gauge principle
U(1) and 'SU(2) local \gauge invariance:

On the invariant form of the wave equation and the equations of motion
for a charged point mass.

V. Fock. 1926.
Z.Phys. 39 (1926) 226-232, Surveys High Energ.Phys. 5 (1986) 245-251
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Conservation of Isotopic Spin and Isotopic Gauge Invariance*

C. N. Yanc f Anp R. L. MiILLS
M Brookhaven National Laboratory, U pton, New York
(Received June 28, 1954)

It is pointed out that the usual principle of invariance under isotopic spin rotation is not consistant with
the concept of localized fields. The possibility 1s explored of having imvariance under local 1sotopic spin
rotations. This leads to formulating a principle of isotopic gauge invariance and the existence of a b field
which has the same relation to the isotopic spin that the electromagnetic field has to the electric charge. The
b field satisfies nonlinear differential equations. The quanta of the b field are particles with spin unity,
isotopic spin unity, and electric charge =e or zero.




Quantum electrodynamics
The free Dirac Lagrangian is:

‘C’ — E [Z’/},M a,u,_ Wl} ?7/)

It is invariant under abelian global U(1) gauge transformation:

where o is a real constant. Find conserved current.

We demand generalizing it into a local gauge symmetry by
demanding the invariance even if a=a(x). The mass term
is still invariant but not the kinetic energy term.



Quantum electrodynamics

The invariance can be reinstated by introducing a gauge field
and a gauge covariant derivative:

Dyt(x) = (0, + ie A, (x)) (x)

e is the fermion coupling to the gauge field.

The starting point now is:

L=1Y[iv" D, —m]

Thisis invariant under simultfaneous gauge transformations
of the fermion and the gauge fields:



Quantum electrodynamics




Quantum electrodynamics
The wave-function of an electron carries a phase with ift.

In global gauge transformation, this phase is changed by the
same amount at every space-time point and the Lagrangian is
invariant.




Quantum electrodynamics

In local gauge transformation, this phase is changed by
arbitrarily different amounts at every space-time point.

Gauge field with compensating transformation is introduced
to obtain local gauge invariance.
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SU(N) gauge theory
The free field is described by the Dirac Lagrangian:

L= E [Z’ijau —m]

It is invariant under the SU(N) transformations, with 69 real
constants. Find conserved current.




SU(N) gauge theory

Here >7%(a=1,2,3, .., N°-1) are n X h matrices in n-dimensional
representation of the SU(N) group.

These matrices obey the following Lie algebra:

The structure functions f .. uniquely determine the group
SU(N) in operation.



SU(3) gauge theory

There are different color phases associated with quarks

In global gauge transformations, they are transformed
independently of x and hence the Lagrangian is invariant.




SU(N) gauge theory

We want to enforce the invariance of the Lagrangian under
local gauge transformations:

We now need (N2*-1) gauge fields & the covariant derivative is:

L=1 V"' Dy —ml Y




SU(N) gauge theory

The gauge fields'must transform as:

which ensures the invariance of the Lagrangian.



SU(N) gauge theory

T("AZ () T(I'AZ, ()’

2 —




SU(3) gauge theory

Lnitially:
— Mttt i

Q09

b7 *§+ b

Compensating
fields restore
gauge invariance

Local Gauge
transformation:

3, rb, g, gb, bT, bg, -=(17—gg), —=(r7+ g8 — 2bb)



Recalling quantum electrodynamics

A candidate for the dynamics of the gauge field A in QED is
the vector potential of the Maxwell's equations:




Recalling quantum electrodynamics
We can easily check the following:

(DuD, — D, D,) ¢ =ielF,, ¢

It goes beyond U(1):

(D,LLDV R DVDM> ¢
([0, +ieA,] |0, +ieA,] — [0, +ieA,] |0, +ieA,])V
66‘,7&7+ ie0, A, + teA O +4eAL0;, — 6%4?47) Y

(OpOp + 10, A, + ieAndy + ieAydr— e2AyAr) 1)
ie (0,4, —0,A,)
ek, Y




Recalling quantum electrodynamics
We now want to show the following:

(D,D,—D,D,)V]=exp (—ia(x)) (D, D,—D, D, )

We start from:
DLDL@D’
D, [D;exp (—ic(x)) V]

D; [exp (—104(33)) Duw]
exp (—ia(x)) [D,D, Y]

This proves the above idenftity.



Recalling quantum electrodynamics

The two identities are:




Recalling quantum electrodynamics

As | is an arbitrary spinor and exp(-ia(x)) & F,,, commute,
the later being a function, we obtain the gauge invariance
of . the field tensor:

F ., =F,

JLV
So we construct the Lorentz invariant quantity:

And the Lagrangian is:

L=1yliv'D, —m| —




Dynamics of the field tensor

How do we define F, for SU(N)?
The following definition does not work:

FL () = 0,A5(x) — 0, A7 (x)

LV

We can check that with this definition,

IVl is not gauge invariant.

Thus we follow the procedure just outlined. Use the
definition of F,, as follows and deduce what it is:




Non abelian field tensor

(DD, — D,D,)

b
([() +ZJ—4a] [(7 +ZJ—4b] [0 +1J24b] !0 +lJ—4a]>L'
b
2y r b o a T_ T_ oy
V¢+zj//fﬁa+uz(aﬂ4u)z, g*A%A Zza)
r ' P ’ ¢ 2

2Ab 40,

b ra y

a b
¢ a a b |7 T_
204 +igAL A, [—22]>

T a a T¢ ,
— 701/44“ - gfabci e 4.1/7)

45— 9L abe AL AL ) )

, . T
Jfabc Ab 40) L' — Zg?




Dynamics of the field tensor

Is F,,-gauge invariant? No.

Show:

Show that F - F" s gaugeinvariant.

1

SU(N) Lagrangian: L =1 [iv'D, —m] — - Fe EbY

2
Fe F,LLI/ ~ _gfabcaMAcyzAb,uAcy . ngabCfadeAb A€ Ad,LLAel/

v [T ”

These terms correspond to self coupling of the gauge field,
triple and quartic gluon interactions.



The QCD Lagrangian

Thus the QCD Lagrangian can be written as (modulus gauge
fixing term and ghosts)

N
1 L By
Locp = —Z il Tl s Z wf Dy — my] wf

,LLI/

1

v
— oI, )

v

LocD =

A XA
)= 5 Fiul@), Dyasle) = (0, + 10"

Gluon Fields: Massless, spin 1 bosons, color octet because
the group contains eight generators, flavor singlet (i.e.,
gluons are flavor blind, not distinguishing between flavors
of whatever they interact with).



Feynman rules in covariant gauges

The propagators:

Gluon Propagator:

A p B8 g o8 a B .
e 60 [—g™H(1-8) S —] =1
p t1l€ p +1€

Ghost Propagator:

Quark Propagator:

a,l p b,]
—




Feynman rules in covariant gauges

The gluon self interactions:

Triple Gluon Vertex:

—g £ [(p—q) g +(q-1)"¢""+(r-p)’g"]

(all momenta incoming)

Four Gluon Vertex:
B.,B —igz fXACfXBD -

Sig® PP |

R




Feynman rules in covariant gauges

The gluon vertices with ghosts and quarks:

Quark-Gluon Vertex:

—1g (tA)cb ('}’a)ji




Higher orders and infinities

» Electrodynamics was born in 1920s through the works of
Born, Heisenberg, Dirac, Pauli, Feynman, Schwinger., etc.

 Works of F. Bloch, A. Nordsieck (1937) and V. Weiskopf
(1939) revealed QED calculations worked only at first
order in perturbation theory. Infinites emerged at higher
orders.

» In 1940s, precise measurements of the levels of Hydrogen
atom, Lamb shiff and the magnetic moment of the
electron exposed discrepancies between experiment and
Tree level theory.

* Works of Feynman, Schwinger. and Tomonaga [1943-1949]
introduced the concept of renormalization to solve the
problems of QED. Nobel prize of 1965.



Richard Feynman and other phvysicists gathered in June 1947 at Shelter
Island, New York, several months before the meeting at the Pocono Manor Inn in

which Fevnman introduced his diagrams. Standing are Willis Lamb (i¢ft) and John

Wheeler, Seated, from left to right, are Abraham Pais, Richard Feyvnman, Hermann
Feshbach and Julian Schwinger. (Photograph courtesy of the Emilio Segre Visual

Archives, Amernican Institute of Physics.)




Higher orders and infinities
Lamb Shift:

According to Dirac and Schrodinger, the atomic states
with the same n and j quantum numbers but different |
quantum numbers ought to be degenerate.

A famous experiment of Retherford and Lamb in 1947
showed that the states

2519(n=21=0,j=1/2)  2pppn=21=1,7=1/2)

of the Hydrogen atom were not degenerate.

This effect is explained by perturbative QED.



Higher orders and infinities

44 eV

Lamb Shifi: Lamb Shift in Hydrogen Atom
4 eV

1058 MHz

- A |

(L=0)




Higher orders and infinities

Lamb Shift:

Electron mass renormalization




Renormalization in One Hour

-~

X' AW



Infinities in electromagnetism

Electric potential due to an infinite line charge:

This function U does not ¢ alinite constant

have dimensions. Such f r) = ¢ an infinite constant
functions have possibilities: /D)

L is a problem related scale.

U(r)is divergent and is translation invariant



Infinities in electromagnetism
Reqularize potential: (i) Cut off method

Repeat steps for. potential difference between two points.

This regularized potential has following properties:.

Vieo(r/L) is convergent
Vieo(r/L) is NOT franslation invariant



Infinities in electromagnetism

Regularize potential: (i) Dimensional Regularization

Substitute:



Infinities in electromagnetism

Regularize potential: (i) Dimensional Regularization

Electric field is:

COWeeg(r/p) A

or 2mlteeyr 2TEQT

This reqgularized potential has the following properties:

Vieo(r/p) is convergent
Vieq(r/p) IS Translation invariant



Infinities in electromagnetism

“Renormalization Schemes”

s Expand V;..(r/v) in‘powers of :

A1 2
[— — v —logm + log% + O(e)]

€

« \/ depends on an additional length scale!



Infinities in QED

» Charge or. coupling renormalization:

Bare

Physical
charge

Charge

* Loops introduce divergences which need to be regularized
and renormalized.

 Quantities such as coupling run with momenta.



QED vs QCD

Quantum Electrodynamics (QED)

Electric Charge

Coulomb Charge

~a~1/137

_/

High energy

-

Distance from the Vw energy
bare e charge

Quantum Chromodynamics (QCD)

Confinement
DCSB

a,a1

-
t Distance from the bare
High energy ~ duark color charge

Asymptotic freedom




Dimensional regularization

One-loop calculations in QED and QCD involve integrals
which diverge. An example of a divergent infegral is:

Introduce some reqgulator. Regularized diagrams converge.

There exist many regularization methods. Cut-off, Pauli-
Villars, lattice and dimensional regularization.

The regularization should preserve as many symmetries of
the theory as possible, ensuring manipulating regularized
Feynman integrals are simple, etc.

The best choice is the dimensional regularization. Nobel
Prize 1999 (+'Hooft and Veltman).



Massive vacuum diagram

1-loop massive integral with
dimensional regularization

One-loop massive vacuum diagram

Massless integrals with no
external momentum scale




Massless bubble diagram

iThe'massless propagator:
diagram with arbitrary ’@
powers:

E=+p
One-loop massless propagator diagram

ddk s d/2 2\d/2—n1—n2
DDz s (_p ) G(n’17 712) )
1 2

Dy = —(k+p)?, Dy=—k’

Expression:

G(nl '71.2) — M /l gpd/Q_nQ_l(l L I)d/Q_nl_lel?
L ['(ny)T(ns) 0 ’ |

Finally: [EIINEIES L ;(211)1;(71;2);15?6;2—;?1—)2(2(5/2 =



Massless bubble diagram

Ultraviolet divergences:

The denominator in

/ dk [(=d/2 + ny 4+ ns|0(d/2 — n)T(d/2 — no)
(

k+ p)2n1k2”2 > ['(n1)T'(n2)I(d — ny — o)

behaves as (k%)™ at k — oo.Therefore, the integral

diverges if d > 2(ny + ny). At d—4this means n+ n<2.
This ultraviolet divergence shows itself as a 1/ pole of
the first I' function in the numerator for ny = ny = 1

This I' function depends on nqy + ne, i.e., on behaviour
of the integrand at k — oo.




Massless bubble diagram

Infrared divergences:

Theintegral

d’k = U(=d/2+n1 +no)[(d/2 —n)T(d/2 — ng
(k + p)in [.2n2 ['(ny)T'(no)'(d — nqy — no)

can also have infrared divergences. Its denominator
behaves as (k*)"2 at k — 0, and the integral diverges
in this region if d < 2nsy. At d — 4 this means ny > 2.
This infrared divergence shows itself as a 1/¢ pole of
the third I' function in the numerator for ny > 2
(ThisI" function depends on ng,i.e., on the behaviour

of the integrand at £ — 0). Similarly, the infrared
divergence at & + p — 0 appears, at d — 4, as a pole

of the second I' function, if ny > 2.




What next?

* How can we reqgularize & renormalize QED at one loop?
- How does the coupling runin QED?

* How can we answer the same questions in QCD?

* What are the consequences of running coupling in QCD and
its infrared enhancement and what are its implications for
hadron physics?



