

I'm the problem, it's me: Viscosity in 3+1d QCD

Hank Lamm

Quantum Computing for Particle Physics, it's a need

- The world is quantum, and we are lucky anything is amenable to classical computers
- Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
- \quad This opens up new frontiers \& extends the reach of LHC, LIGO, EIC \& DUNE

While broad, these topics often are formulated as lattice field theories

Quantum Simulation for High-Energy Physics

Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001
Wonderful survey of physics questions, methods, and outstanding problems in field

Don't let anyone fool you...

There is SO much to be done

As a target, today we are going to consider the viscosity of QCD

- $\eta=\frac{V}{T} \int_{0}^{\infty}\left\langle T_{12}(t) T_{12}(0)\right\rangle$
- I believe its a "near-term" goal and allows for focus...
- ...while introducing all the necessary pieces

Quantum algorithms for transport coefficients in gauge theories NuQS Collaboration - Phys.Rev.D 104 (2021) 9, 094514 Formulates lattice operators and propose correlators

Viscosity of pure-glue QCD from the lattice Altenkort et al. - 2211.08230 [hep-lat] State of the art lattice results, but massive uncertainties persist

$$
\eta / s=0.15-0.48, T=1.5 T_{c}
$$

$$
\zeta / s=0.017-0.059, T=1.5 T_{c}
$$

Take it to the limit

- $\mathrm{O}(\mathrm{L}, \mathrm{a}, \mathcal{H})$ is an approximation for HEP
- Truncations leads to systematic errors
- Extrapolating is done on results, reducing computational resources...
- ...but obscures precise resource estimates

Qubit Costs for Lattice Field Theory

- Lattice field theory discretizes spacetime into a lattice of size (La) ${ }^{\text {d }}$
- $\mathrm{L} \rightarrow \infty$ and $\mathrm{a} \rightarrow 0$ must be taken
- Matter fields are placed on sites, gauge fields on links
- Fermionic matter need F=Spin x Color x Flavor qubits per site e.g. 12 for staggered QCD
- Gauge links are bosonic and need efficient truncation \wedge qubits per link e.g. SU(3) ~ ???q
- Scalar (bosonic) matter is infinite-dimensional, so must be truncated as well

Gate Costs for Lattice Field Theory

- Lattice field theory approximates $U(T)=e^{-i H T}$ which can corresponds to into a lattice of size Ta_{t}
- $a_{t} \rightarrow 0$ or equivalent limit must be taken
- Trottertization has this property, others less clear i.e. potentially variable temporal spacing
- Gate cost is heuristically: $\frac{T}{a_{t}} \times\left[\mathcal{O}(1)(d \Lambda+F)(L / a)^{d}\right]^{\mathcal{O}(1)}$

Exercise 1: What will viscosity take?

Qubits: $(d \Lambda+F)(L / a)^{d} \quad$ Gates: $\frac{T}{a_{t}} \times\left[\mathcal{O}(1)(d \Lambda+F)(L / a)^{d}\right]^{\mathcal{O}(1)}$

- d=3
- What is F? (Staggered=12 Wilson=24)
- Note: a_{t} scaling of errors
- How will you truncate \wedge ? $(964$-bit \mathbb{C} floats $=1152)$
- Note: truncation errors
- How small will you take a? ($1 \mathrm{fm}^{-1} \sim 200 \mathrm{MeV}$)
- Note: discretization errors
- How large will you take L?
- Note: finite volume errors
- Gate cost prefactor ~ 10 and exponent~2
- How small will you take a_{t} ?
- Note: Trotter errors
- How long do you need to run for (T)?
- Note: Signal resolution errors

What didja get?

- Qubit costs: $10^{3}-10^{9}$
- 10 q for $\mathrm{SU}(3)$ might be reasonable
- $\quad \mathrm{a} \sim 0.5 \mathrm{fm}, \mathrm{L} \sim 3 \mathrm{fm}$
- Perhaps we drop fermions
- Perhaps lower dimensions
- Gate costs: $10^{7}-10^{40}$
$-a_{t} \sim 0.1 \mathrm{fm}, \mathrm{T} \sim 1 \mathrm{fm}$
- Quantum arithmetic can hurt
- Perhaps sloppy synthesis
- Perhaps improved algorithms

General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory
Davoudi, Shaw, Stryker - 2212.14030 [hep-lat]
Understanding the synthesis and Trotter errors, along with algorithmic choices in 1+1 SU(2)

Exercise 2: What gate fidelities do you need?

- Consider your gate cost N_{g}
- Assume that every gate has a infidelity of p
- "Simulation fidelity" is $(1-p)^{N_{g}}$ i.e the probability your result is without error.

What must p be such that the simulation fidelity is 50%

Exercise 2: What gate fidelities do you need?

- Consider your gate cost N_{g}
- Assume that every gate has a infidelity of p
- "Simulation fidelity" is $(1-p)^{N_{g}}$ i.e the probability your result is without error.

What must p be such that the simulation fidelity is 50%

$$
10^{-8}-10^{-40}
$$

Today, we talk about $p \sim 10^{-3}$

Noisy Intermediate-Scale Quantum vs Fault-Tolerance NISQ

- Exists today!
- Limited number of qubits
- Probably $<10^{4}$
- Basic gate set is native one
- Often included arbitrary rotations
- Speed limited by 2q gate
- Errors tolerated or mitigated
- Probably $>10^{-7}$
- Measurement slow
- Count CNOTs

Your paradigm will greatly affect your research projects

Hamiltonians for Nonabelian Gauge Theories in the Continuum

H in terms of CEM fields

$$
H=\int d^{d} x \operatorname{Tr}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)
$$

Fields \& Field-strength tensor

$$
E_{i}=\frac{1}{2} F_{i i} \quad B_{i}=\frac{1}{2} \epsilon_{i j k} F_{j k}
$$

FS tensor \& gluon field

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i e\left[A_{\mu}, A_{\nu}\right]
$$

Chromo-field components

$$
E_{i}=\lambda^{a} E_{i}^{a} \quad B_{i}=\lambda^{a} B_{i}^{a}
$$

Gell-Mann matrices
$\operatorname{Tr}\left(\lambda^{a} \lambda^{b}\right)=\frac{1}{2} \delta_{a b}$

$$
\left[\lambda^{a}, \lambda^{b}\right]=i f^{a b c} \lambda^{c}
$$

Approximating gauge fields

- For reasons of gauge symmetry, discretizing A_{μ} is fraught with danger
- Instead, define an average A_{μ} along a link in direction μ as

$$
\mathcal{A}_{\mu}=\frac{1}{a} \int_{\mu} d \mathbf{x} \cdot \mathbf{A}
$$

- On the lattice, this definition leads to a discretization error since the field at all points between $\mathbf{x} \& \mathbf{x}+\hat{\mu}$
- Since we are considering lattice Hamiltonians, for now we restrict ourselves to the spatial lattice with latin indices $\mathrm{i}, \mathrm{j}, \mathrm{k} . .$.

$$
\begin{aligned}
\mathcal{A}_{i} & =\frac{1}{a} \int_{-a / 2}^{a / 2} d x_{i}\left[A_{i}(\mathbf{x})+x_{i} \partial_{i} A_{i}(\mathbf{x})+\frac{1}{2} x_{i}^{2} A_{i}(\mathbf{x})+\cdots\right] \\
& =A_{i}(\mathbf{x})+\frac{a^{2}}{24} \partial_{i}^{2} A_{i}(\mathbf{x})+\frac{a^{4}}{1920} \partial_{i}^{4} A_{i}(\mathbf{x})+\cdots
\end{aligned}
$$

Wilson lines and gauge links

- To avoid the dangers of using A_{μ} we use the average to define a gauge link which is a Wilson line:

$$
U_{l}=e^{i e a \mathcal{A}_{l}}
$$

- Taylor expanding and using relations between $\mathcal{A}_{l} \& A_{l}(x)$, we see

$$
U_{l}(\mathbf{x})=1+i e a A_{l}(\mathbf{x})-\frac{e^{2} a^{2}}{2!} A_{l}(\mathbf{x}) A_{l}(\mathbf{x})+\cdots
$$

- As we will see, while this can reproduce the continuum theory when a=0, at finite lattice spacing, there will be new interactions in the Hamiltonian

Commutation relations

- We would like to recover in the continuum

$$
\begin{aligned}
{\left[E_{i}^{a}(\mathbf{x}), A_{j}^{b}(\mathbf{x})\right] } & =i \delta_{i j} \delta_{a b} \delta(\mathbf{x}-\mathbf{y}) \\
{\left[A_{i}^{a}(\mathbf{x}), A_{j}^{b}(\mathbf{x})\right] } & =\left[E_{i}^{a}(\mathbf{x}), E_{j}^{b}(\mathbf{x})\right]=0
\end{aligned}
$$

- To see how to define our lattice kinetic term, we should investigate \mathcal{E}_{l}^{a} one way this can be done is through the lattice commutator

$$
\left[\mathcal{E}_{l}^{a}, U_{m}\right]=\left[\mathcal{E}_{l}^{a}, e^{i e a \mathcal{A}_{m}}\right]
$$

Lattice commutation relations

Using a BCH relation:

$$
e^{-A} B e^{A}=B+[B, A]+\frac{1}{2!}[[B, A], A]+\frac{1}{3!}[[[B, A], A], A]+\cdots
$$

It is possible to show:

$$
\begin{aligned}
{\left[\mathcal{E}_{l}^{a}, U_{m}\right] } & =\left[\mathcal{E}_{l}^{a}, e^{i e a \mathcal{A}_{m}}\right] \\
& =i e a\left[\mathcal{E}_{l}^{a}, \mathcal{A}_{m}\right] U_{m}
\end{aligned}
$$

Check this for yourself tonight!

Improvement and analytic techniques in Hamiltonian lattice gauge theory

Lattice electric field

Now, using the definition,

$$
\mathcal{A}_{i}=A_{i}(\mathbf{x})+\frac{a^{2}}{24} \partial_{i}^{2} A_{i}(\mathbf{x})+\frac{a^{4}}{1920} \partial_{i}^{4} A_{i}(\mathbf{x})+\cdots
$$

We find that the the commutator with the continuum field is:

$$
\left[\mathcal{E}_{l}^{a}, U_{m}\right]=i e a\left[\mathcal{E}_{l}^{a}, A_{m}^{b}+\frac{a^{2}}{24} \partial_{m}^{2} A_{m}^{b}+\cdots\right] \lambda^{b} U_{m}
$$

Which implies that to ensure the continuum relations, we should associate:

$$
\mathcal{E}_{l}^{a}=-\frac{a^{d-1}}{e}\left[E_{l}^{a}-\frac{a^{2}}{24} \partial_{i}^{2} E_{i}^{a}+\cdots\right]
$$

Improvement and analytic techniques in Hamiltonian lattice gauge theory

Lattice Kinetic Energy

- With this definition and imposing gauge invariance, we find:

$$
\begin{aligned}
& \operatorname{Tr}\left[\mathbf{E}^{2}(\mathbf{x})\right] \approx \\
& \frac{g^{2}}{2 a} \operatorname{Tr}\left[X \mathcal{E}_{i}(\mathbf{x}) \mathcal{E}_{i}(\mathbf{x})+Y \mathcal{E}_{i}(\mathbf{x}) U_{i}(\mathbf{x}) \mathcal{E}_{i}(\mathbf{x}+a \hat{i}) U_{i}^{\dagger}(\mathbf{x})\right]
\end{aligned}
$$

- Expanding E and U in terms of their continuum fields, we find

$$
K=\frac{X+Y}{2} E_{i}^{2}+\frac{5 Y-X}{12} E_{i} \partial_{i}^{2} E+\mathcal{O}\left(e a^{2}, a^{4}\right)
$$

- Setting $\mathrm{X}=1, \mathrm{Y}=0$ we obtain the KS kinetic term with errors scaling with a^{2}

Exercise 3: Improved Lattice Kinetic Energy

- What values of X, Y would cancel of all classical a^{2} errors?

$$
K=\frac{X+Y}{2} E_{i}^{2}+\frac{5 Y-X}{12} E_{i} \partial_{i}^{2} E+\mathcal{O}\left(e a^{2}, a^{4}\right)
$$

Lattice Potential Energy

- Constructed form closed loops of Wilson lines

- The simplest nontrivial Wilson loop is the plaquette:

$$
P_{x y}=1-\frac{1}{N} \operatorname{Re} \operatorname{Tr}\left[U_{x}(\mathbf{x}) U_{y}(\mathbf{x}+a \hat{\mathbf{x}}) U_{x}^{\dagger}(\mathbf{x}+a \hat{\mathbf{y}}) U_{y}^{\dagger}(\mathbf{x})\right]
$$

Improvement and analytic techniques in Hamiltonian lattice gauge theory Carlsson - PhD thesis, 0309138 [hep-lat]

Lattice Potential Energy

- Including R_{ij} and R_{ji} yields:

$$
V=\frac{2 N}{a g^{2}}\left[X P_{i j}(\mathbf{x})+\frac{Y}{2}\left(R_{i j}(\mathbf{x})+R_{j i}(\mathbf{x})\right]\right.
$$

- Which can be related to the continuum, obtaining:

$$
\begin{aligned}
V \approx & a^{d}\left[(X+4 Y) \operatorname{Tr}\left(F_{i j}^{2}\right)\right. \\
& \left.+\frac{a^{2}}{12}(X+10 Y) \operatorname{Tr}\left(F_{i j}\left\{D_{i}^{2}+D_{j}^{2}\right\} F_{i j}\right)+\mathcal{O}\left(e^{2} a^{2}, a^{4}\right)\right]
\end{aligned}
$$

- So if you are satisfied with a^{2} errors, $\mathrm{X}=1, \mathrm{Y}=0$ yields the KS Hamiltonian

Exercise 4:

- What values of X and Y will yield an a^{2} improved Hamiltonian?

$$
\begin{aligned}
V \approx & a^{d}\left[(X+4 Y) \operatorname{Tr}\left(F_{i j}^{2}\right)\right. \\
& \left.+\frac{a^{2}}{12}(X+10 Y) \operatorname{Tr}\left(F_{i j}\left\{D_{i}^{2}+D_{j}^{2}\right\} F_{i j}\right)+\mathcal{O}\left(e^{2} a^{2}, a^{4}\right)\right]
\end{aligned}
$$

Regardless of your choice, you will need to do some math

- e.g. $\mathrm{V}=\operatorname{Tr}(\mathrm{g})$
- Floating point or fixed point arithmetic is expensive in qubits and gates
- Consider the half-adder

(b)

(c)

Questions?

Exercise 5: Implement the Adders

Take a look at lab_quantum_adder.ipynb

...but I really want physics

99.998\% cost is QFOPs for < 3 yrs on an exascale quantum computer.

Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer
Kan and Nam - 2107.12769 [quant-ph]
Rough, conservative, model- and algorithm-dependent estimates for viscosity and heavy-ion collisions

Primitives as a construction method

- These are lattice gauge theories, so we need to ability to perform group operations on the local registers
- Think native gates for gauge theories
- U_{i} and E_{i} are conjugates related* by group Fourier transform (gFT)
- *Depending on your digitization, the exact conjugate relations can be broken, in which cases there is an approximate gFT
- Further, group theory and gauge invariance requires:
- Inversion: g -> g ${ }^{-1}$
- Multiplication: g,h -> gh
- Trace: $\operatorname{Tr}(\mathrm{g})$

Primitives as gates

- Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$
- Trace gate $\mathfrak{U}_{T r}(\theta)|g\rangle=e^{i \theta \operatorname{Re} \operatorname{Tr} g}|g\rangle$
- Fourier Transform gate: $\mathfrak{U}_{F} \sum_{g \in G} f(g)|g\rangle=\sum_{\rho \in \hat{G}} \hat{f}(\rho)_{i j}|\rho, i, j\rangle$

General Methods for Digital Quantum Simulations of Gauge Theories

Circuits for Kogut-Susskind without regard for connectivity

- With these gates, the time evolution operators are given for Kogut-Susskind by:

- Need \wedge A2A in-register and 1:(2d) register connectivity

General Methods for Digital Quantum Simulations of Gauge Theories

Exercise 6: $\mathbf{U}_{\mathrm{v}, \mathrm{ks}}$ with only linear register connectivity

- Real hardware commonly has limited connectivity.
- The $\mathrm{U}_{\mathrm{V}, \mathrm{Ks}}$ assumed 1 register per plaquette could be coupled to the other 3

- Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$
- Trace gate $\mathfrak{U}_{\operatorname{Tr}}(\theta)|g\rangle=e^{i \theta \operatorname{Re} \operatorname{Tr} g}|g\rangle$
- Can you construct a $\mathrm{U}_{\mathrm{v}, \mathrm{ks}}$ where only linear (nearest-neighbor) register interactions?
- It might prove useful to consider $\mathcal{U}_{\times}^{R}|g\rangle|h\rangle=|g h\rangle|h\rangle$

Exercise 6: $\mathrm{U}_{\mathrm{v}, \mathrm{Ks}}$ with only linear register connectivity

- One possible solution:

- Notice difference to previous, including total clock cycles

What is trotterization?

$$
\begin{aligned}
& \mathcal{U}(t)= e^{-i H t} \\
& \approx\left(e^{-i \delta t \frac{H_{V}}{2}} e^{-i \delta t H_{K}} e^{-i \delta t \frac{H_{V}}{2}}\right)^{\frac{t}{\delta t}} \\
& \approx \exp \left\{-i t\left(H_{K}+H_{V}+\frac{\delta t^{2}}{24}\left(2\left[H_{K},\left[H_{K}, H_{V}\right]\right]-\left[H_{V},\left[H_{V}, H_{K}\right]\right]\right)\right)\right\}
\end{aligned}
$$

- δt is bare $c\left(a, a_{t}\right)$ not physical a_{t}
- Introduces higher dimension operators

How to estimate Trotter errors

- Loose error bounds obtained from

General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory Davoudi, Shaw, Stryker - 2212.14030 [hep-lat]
Understanding the synthesis and Trotter errors, along with algorithmic choices in 1+1 SU(2)

$$
\left.\| U(t)-U_{\text {trott }}(t)\right) \| \leq(\delta t)^{n} \sum_{i, j, \cdots}\left[\left[H_{i}, H_{j}\right], \cdots\right]
$$

- Overly conservative: cutoff states are largest eigenvalues
- Empirically, we find MUCH smaller

State-dependent error bound for digital quantum simulation of driven systems Hatomura - PRA 105, L050601 (2022)
Compares trotter errors for given initial state to norm-based estimates

- Can we use Euclidean calculations to compute $\quad\langle\psi| O_{i}|\psi\rangle$
- Another interesting research topic

$$
\begin{array}{rlrl}
\left\|\mathcal{O}_{3}\right\| & =\left\|\left[H_{I}^{(j)}(r),\left[H_{I}^{(j)}(r), H_{I}^{(k)}(r)\right]\right]\right\| & \leq 4 x^{3} \quad(k>j), \\
\left\|\mathcal{O}_{5}\right\| & =\left\|\left[H_{I}^{(j)}(r),\left[H_{I}^{(j)}(r), H_{I}^{(k)}(r+1)\right]\right]\right\| & \leq 4 x^{3}, \\
\left\|\mathcal{O}_{13}\right\| & =\left\|\left[H_{I}^{(l)}(r),\left[H_{I}^{(k)}(r), H_{I}^{(j)}(r)\right]\right]\right\| & \leq 4 x^{3} \quad(k>j, l>j), \\
\left\|\mathcal{O}_{14}\right\|=\left\|\left[H_{M}(r+1),\left[H_{I}^{(k)}(r), H_{I}^{(j)}(r)\right]\right]\right\| & \leq 4 x^{2} \mu \quad(k>j), \\
\left\|\mathcal{O}_{15}\right\|=\left\|\left[H_{I}^{(l)}(r+1),\left[H_{I}^{(k)}(r), H_{I}^{(j)}(r)\right]\right]\right\| & \leq 4 x^{3} \quad(k>j), \\
\left\|\mathcal{O}_{19}\right\|=\left\|\left[H_{I}^{(l)}(r),\left[H_{I}^{(k)}(r+1), H_{I}^{(j)}(r)\right]\right]\right\| & \leq 4 x^{3} \quad(l>j), \\
\left\|\mathcal{O}_{20}\right\|=\left\|\left[H_{M}(r+1),\left[H_{I}^{(k)}(r+1), H_{I}^{(j)}(r)\right]\right]\right\| \leq 4 x^{2} \mu, \\
\left\|\mathcal{O}_{22}\right\|=\left\|\left[H_{I}^{(l)}(r+1),\left[H_{I}^{(k)}(r+1), H_{I}^{(j)}(r)\right]\right]\right\| \leq 4 x^{3}, \\
\left\|\mathcal{O}_{24}\right\|=\left\|\left[H_{I}^{(l)}(r+2),\left[H_{I}^{(k)}(r+1), H_{I}^{(j)}(r)\right]\right]\right\| \leq 4 x^{3} .
\end{array}
$$

Reduce excited state contamination with smearing

FIG. 3. Quantum circuit for constructing the projected element $\mathcal{S}(\rho, \mathcal{Q})$ on a 2 d lattice. The forward slash indicates that the register maybe composed of multiple qubits. The registers $\left|U_{m}\right\rangle$ correspond to the links in Fig. 1. The three register gate $\mathcal{S}(\rho, \mathcal{Q})$ takes the $\left\rangle_{p_{1}}\right.$ and $\left.|\right\rangle_{p_{2}}$ scratch plaquette registers as inputs and outputs the closest group element to $e^{i \rho \mathcal{Q}}$ onto the scratch register $|\mathbb{1}\rangle_{f}$.

Digitization of nonabelian gauge theories

- Need to find a way to map infinite-dimensional Hilbert space of gauge field to finite quantum register built from qubits

- This is not a trivial decision, it breaks some symmetries and are simulating

$$
H+\hat{\mathcal{O}}_{t r u n c}
$$

The ladder of discrete gauge theories in HEP calculations

What does this digitization cost?

But whereas \mathbb{Z}_{N} can be taken to ∞, limited number for $\operatorname{SU}\left(N_{c}\right)$

$$
\beta \propto \frac{1}{\log (a)} \Longrightarrow a_{f} \propto e^{-\beta_{f}}
$$

So the important question is $a_{s}>a_{f}$ for $S U(3)$?
Nope!

...but why use Wilson action or Kogut-Susskind Hamiltonian?

$$
S_{M}=\beta \operatorname{Re} \operatorname{Tr}\left[1-U_{p}\right]+\beta_{a} \operatorname{Re} \operatorname{Tr}\left[U_{p}\right] \operatorname{Tr}\left[U_{p}^{\dagger}\right]
$$

Glueballs at $a=0.08 \mathrm{fm} \quad \rightarrow 10^{3}$ lattices $\sim 10^{5}$ lq

How do we represent discrete groups?

- Ordered product of generators

$$
\begin{aligned}
& h_{\left\{o_{k}\right\}}=\prod_{k} \lambda_{k}^{o_{k}}=h_{d} \\
& \mathbb{D}_{4}: h_{d}=s^{a} r^{b} \\
& \mathbb{Q}_{8}: h_{d}=(-1)^{a} \mathbf{i}^{b} \mathbf{j}^{c} \\
& \mathbb{B T}: h_{d}=(-1)^{a} \mathbf{i}^{\mathbf{b}} \mathbf{j}^{c} \mathbf{l}^{d} \\
& \Sigma(36 \times 3): h_{d}=\omega_{3}^{a} \mathbf{C}^{b} \mathbf{E}^{c} \mathbf{V}^{d} \\
& \rightarrow|a b c d \cdots\rangle
\end{aligned}
$$

Robustness of Gauge Digitization to Quantum Noise
Gustafson, Lamm - 2301.10207 [hep-lat]
Discusses quantum registers with qubits, qudits for $\mathrm{U}(1), \mathrm{SU}(2), \mathrm{SU}(3)$

Exercise 7: Inverse operation for D_{4}

$$
\begin{array}{rlrl}
\text { Consider the group } \mathbb{D}_{4}: & h_{d} & =s^{a} r^{b} \\
\text { which have the relations: srs } & =r^{-1}=r^{3}, s r=r^{3} s, s=s^{-1}
\end{array}
$$

What is $h_{d}^{-1}=\left(s^{a} r^{b}\right)^{-1}$ in the standard presentation?

Exercise 7: Inverse operation for D_{4}

Consider the group $\mathbb{D}_{4}: \quad h_{d}=s^{a} r^{b}$
which have the relations: $s r s=r^{-1}=r^{3}, s r=r^{3} s, s=s^{-1}$

What is $h_{d}^{-1}=\left(s^{a} r^{b}\right)^{-1}$ in the standard presentation?
 $$
\left(s^{a} r^{b}\right)^{-1}=s^{a} r^{(3-b)(1-a)+a b}
$$

Take Home Exercise 8 : Inverse gate for \mathbf{D}_{4}

$$
\left(s^{a} r^{b}\right)^{-1}=s^{a} r^{(3-b)(1-a)+a b}
$$

- Can you construct a $\mathcal{U}_{-1}\left|a b_{0} b_{1}\right\rangle \rightarrow\left|a^{\prime} b_{0}^{\prime} b_{1}^{\prime}\right\rangle$

Group Primitives for BT

FIG. 4. Trace gate for BT

FIG. 3. Multiplication gate

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - Phys.Rev.D 106 (2022) 11, 114501 Derived and implemented using custom QEM necessary primitives for HEP simulations

Group Primitives for other groups active area of research

- For example, BO needs

$$
\mathcal{U}_{t r}(\theta)=U_{s q u i s h} U_{T r}(\theta) U_{s q u i s h}^{\dagger}
$$

$$
U_{\text {squish }}=
$$

Resource Estimation for Lattice Simulations of $\mathbf{Z}_{2}, \mathrm{BT}, \mathrm{S}(1080)$

TABLE I. C^{n} NOT gates required for $\mathbb{B} \mathbb{T}$ (top) primitive gates (bottom) H_{I} simulations per link per δt.

Gate	CNOT	C 2 NOT	C 3 NOT
\mathcal{U}_{-1}	6	4	0
\mathcal{U}_{\times}	5	8	4
$\mathcal{U}_{T r}$	$20_{\text {QFT } \rightarrow \mathbf{O (1 0 0)}}$	0	0
$\mathcal{U}_{F T}$	1025	0	0

Gate depth rather than memory limits options

N-point correlators and Quantum Advantage

- Nearly all HEP QA is time-evolution $+n$ Hermitian insertions

$$
\left\langle\prod_{i} \mathcal{O}_{i}\left(t_{i}\right)\right\rangle=\int_{\psi(0)}^{\psi(T)} \mathcal{D} \psi \prod_{i} \mathcal{o}_{i}\left(t_{i}\right) e^{-i s}=\left\langle\psi(T) \prod_{i} \mathcal{O}_{i}\left(t_{i}\right) \mid \psi(0)\right\rangle
$$

- Example: Hadronic Tensor which requires Hadamard test

$$
\langle P| \chi^{\dagger}\left(t n^{\mu}\right) \chi(0)|P\rangle=\sum_{i, j, k=\{x, y\}} \frac{c_{i j}}{4}\langle P, a| U_{i, j, k}|P, a\rangle
$$

Parton Physics on Quantum Computers
Lamm, Lawrence, Yamauchi - Phys.Rev.Res 2 (2020) 1, 013272
Formulation of Practical HEP Quantum Advantage Problem

At some point, you need to determine a and a_{t}

- Pick $M_{p h y s}$
- Prep state, measure ωa_{t}
- $\omega=M_{p h y s}$ to get a_{t}

Simulating Z_{2} lattice gauge theory on a quantum computer Clement et al. - 2305.02361 [hep-lat]
Extending the time-evolution using multiple error mitigation strategies

Theoretical errors

- Working at finite coupling means $a>0$
- usable discretization errors are a^{n}
- Working at finite volume mean states get squished
- Errors often scale $\exp (-m L)$ for QCD
- ... but L^{-n} for QED
- ... although Minkowski can lead to difference
- Boundary Conditions also affect things

Periodic Boundary Conditions are HIGHLY desirable

$$
\langle O(t)\rangle_{O B C} \approx\langle O(t)\rangle_{P B C}+A e^{-m T / 2} \cosh m\left(\frac{T}{2}-t\right)
$$

To obtain same results as $L_{P B C}^{d}$ requires $[x(a) L]_{O B C}^{d}$ where $x(a)>1$ grows with a

SWAPs, Routes, and Circuit Cutting

SWAP all boundaries

SWAP thru routing

Boundaries connected

Going to right you are infuriating experimentalists more
For gauge registers, should determine fidelity thresholds

Circuit Cutting

(a)

Figure 1. Decomposition of (a) a non-local gate and (b) a non-local non-destructive measurement into a sequence of local operations. A_{1} and A_{2} are operators such that $A_{1}^{2}=I$ and $A_{2}^{2}=I$.

Constructing a virtual two-qubit gate by sampling single-qubit operations Mitarai, Fujii - New J. Phys. 230230212021
A particularly good explanation and lit review of topic

Multigrid and Circuit Knitting

- Circuit Knitting has $<\mathrm{O}\left(9^{\mathrm{N}}\right)$ scaling
- Quasiprobabilities will also increase costs
- Sign problem!
- Reduce this for LFT through multigrid techniques?
- Split the larger lattice \rightarrow sublattices, 1 per QPU
- Spatially average a spacing \rightarrow Iarger a" for fixed L
- Circuit Knitting time evolution on a' lattice
- Rediscretize $\boldsymbol{a}^{\prime} \rightarrow \boldsymbol{a}$ with pseudorandom sampling

Partial Error Correction, Probabilistic Error Mitigation for LFT

- Given a register, prioritize error channels for mitigation and correction
- Reduction of large theoretical error at lower cost

TABLE I. \mathcal{N}_{i} vs. \mathbb{G} for $U(1)$ subgroups: \mathbb{Z}_{N} where $N=2^{n}$.

Binary	Gray	Qudits	\mathbb{G}
\hat{Y}_{0}	\hat{Y}_{0}	$\hat{B}^{(i, j)}, \hat{Z}^{(i)}$	-
-	$\hat{B}_{a \neg 0}, \hat{Z}_{a}$	$\hat{\mathcal{V}}^{m}$	\mathbb{Z}_{2}
$\hat{X}_{a \neg 0}$	-	-	$\mathbb{Z}_{2^{n-a}}$
$\hat{Z}_{a}, \hat{Y}_{a \neg 0}$	\hat{X}_{0}	-	$\mathbb{Z}_{2^{n-1}}$
\hat{X}_{0}	-	$\hat{\chi}^{m}$	\mathbb{Z}_{N}

FIG. 2. $\quad \mathcal{P}_{\mathbb{G}}\left(t_{b}\right)$ for \mathbb{Z}_{8} versus t_{b} using $|g\rangle,|r\rangle$, and $|s\rangle$ for depolarizing and dephasing channels.

Robustness of Gauge Digitization to Quantum Noise

Gustafson, Lamm - 2301.10207 [hep-lat]
Classification of Gauge Violating noise for qubits, qudits for $\mathrm{U}(1)$, $\mathrm{SU}(2), \mathrm{SU}(3)$

Endgame

- The road to practical quantum advantage in HEP will be long and winding
- We do not have anything close to optimal resource estimates
- Hardware limitations, quantum software stack, and classical overhead are just now being investigated
- Some exciting stepping stones for you to work on.

