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I’'m the problem, it’s me

Hank Lamm
June 27, 2023



Quantum Computing for Particle Physics, it’s a need

o The world is quantum, and we are lucky anything is amenable to classical computers
— Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
—  This opens up new frontiers & extends the reach of LHC, LIGO, EIC & DUNE

o ADb initio cross sections for colliders and
neutrino experiments

o Cosmic inflation and the evolution of
matter asymmetry in the early universe

o Explorations of BSM, supersymmetry,
and quantum gravity
BooNE
o Hadronization and Hydrodynamics in Conmiery
Heavy-lon collisions :

Pion track

B ——
v beam

Cosmic ray

While broad, these topics often are formulated as
lattice field theories

Muon track

Quantum Simulation for High-Energy Physics —_— Run 3469 Event 53223/ October 21",
Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001
Wonderful survey of physics questions, methods, and outstanding problems in field
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Don’t let anyone fool you...

There is SO MUCNH to be done
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As a target, today we are going to consider the viscosity of QCD

V oo
« n=7 Jo (T12(t)T12(0))
* | believe its a “near-term” goal and allows for focus...
* ...while introducing all the necessary pieces

Quantum algorithms for transport coefficients in gauge theories
NuQ@S Collaboration - Phys.Rev.D 104 (2021) 9, 094514
Formulates lattice operators and propose correlators

Viscosity of pure-glue QCD from the lattice 77/8 — O‘ ]-5 _ O°48) T — 1 ‘5TC

Altenkort et al. - 2211.08230 [hep-lat]

State of the art lattice results, but massive uncertainties persist C/ s = 0 . O 1 7 . O . 059 , T - 1 . 5Tc
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Take it to the limit
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O(L,a,H) is an
approximation for HEP

Truncations leads to
systematic errors

Extrapolating is done on
results, reducing
computational
resources...

...but obscures precise
resource estimates



Qubit Costs for Lattice Field Theory

- Lattice field theory discretizes spacetime into a lattice of size (La)?
— L—oo and a—0 must be taken

« Matter fields are placed on sites, gauge fields on links
— Fermionic matter need F=Spin x Color x Flavor qubits per site e.g. 12 for staggered QCD
— Gauge links are bosonic and need efficient truncation A qubits per link e.g. SU(3) ~ ?2??q
— Scalar (bosonic) matter is infinite- dlmenS|onaI so must be truncated as weII

« So qubit cost is: (d/l +_F )(L/a)

fe b3 R
>
¥

O quark 1 A gluon
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Gate Costs for Lattice Field Theory
—iHT

+ Lattice field theory approximates U(T') = e

to into a lattice of size Ta,
— a,—0 or equivalent limit must be taken
— Trottertization has this property, others less clear i.e. potentially variable temporal spacing

+ Gate cost is heuristically: == X (O1)(dA +F )(L /a)d]O(l)

which can corresponds
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Exercise 1: What will viscosity take?

Qubits: (dA + F )(L/a) Gates: alt x [O(1)(dA+F )(L/a) ]O(l
d=3

« Whatis F? (Staggered=12 Wilson=24)
— Note: a, scaling of errors

« How will you truncate A? (9 64-bit C floats = 1152)
— Note: truncation errors

« How small will you take a? ( 1fm™'~ 200 MeV )
— Note: discretization errors

« How large will you take L?
— Note: finite volume errors

« Gate cost prefactor ~ 10 and exponent~2

* How small will you take a.?
— Note: Trotter errors

« How long do you need to run for (T)?
— Note: Signal resolution errors
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What didja get? 100 L ]
+  Qubit costs: 10%-10° — 101}
— 10q for SU(3) might be reasonable % L0-2 _ A

— a~0.5fm, L~3 fm g' 5 :

—  Perhaps we drop fermions i = = i

— Perhaps lower dimensions T o I 1

* Gate costs: 107-10% 10_55 B il e ——— %

1 2 4 8 16 32 64 128 256 512

- a-~0.1 fm, T~1 fm _ .
I k (= # diagonal Pauli operators)

— Quantum arithmetic can hurt
General quantum algorithms for Hamiltonian simulation with applications to a

_ i non-Abelian lattice gauge theory
Perhaps sloppy synthesis Davoudi, Shaw, Stryker - 2212.14030 [hep-lat]

Understanding the synthesis and Trotter errors, along with algorithmic choices in 1+1 SU(2)

— Perhaps improved algorithms

But we don’t today have a good sense of theoretical errors...
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Exercise 2: What gate fidelities do you need?

« Consider your gate cost Ng
* Assume that every gate has a infidelity of p
»  “Simulation fidelity” is (1 — p)®s i.e the probability your result is without error.

What must P be such that the simulation fidelity is 50%
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Exercise 2: What gate fidelities do you need?

« Consider your gate cost Ng
* Assume that every gate has a infidelity of p
»  “Simulation fidelity” is (1 — p)®s i.e the probability your result is without error.

What must P be such that the simulation fidelity is 50%

Silicon

up
Trapped ion

10-8-10%0
%1 - ;%T
Today, we talk about D ~103 %ji::
z

2.0e-4-
1.0e-4 |
2003 2004 2005 2006 2007 2008 2009 2010 2011D2;1:e2013 2014 2015 2016 2017 2018 2019 2020 2021
Forecasting timelines of quantum computing
Sevilla and Riedel - 2009.05045 [quant-ph]
11 6/18/2022 Hank Lamm | Viscosity in 3+1d QCD Current hardware properties and projections for future



Noisy Intermediate-Scale Quantum vs Fault-Tolerance
NISQ FT

Scalable, networked qubits

e Exists today!

e Limited number of qubits — No limits on number of logical qubits
— Probably <10* e Requires error correction
« Basic gate set is native one — Potentially huge overhead
— Often included arbitrary rotations — Threshold error rates
e Speed limited by 2q gate — Measurement + Classical compute
 Errors tolerated or mitigated * Gate set limited
—  Probably >107 — Must synthesize

—  Measurement slow — Count nontransverse T-gates

— Count CNOTs

©rcOnducting qupi
o ts and reg
hysica| Quantym Pro

Building logical qubits in a superconducting quantum computing system
12 6/18/2022 Hank Lamm | Viscosity in 3+1d QCD Gambetta, Chow, Steffen - npj Quantum Information 3, 2 (2017)
Discusses possible architectures for FT devices



Your paradigm will greatly affect your research projects
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Hamiltonians for Nonabelian Gauge Theories in the Continuum

H in terms of CEM fields H = [d% Tr(E* + B?)

Fields & Field-strength tensor E; = 3 Fj; B; = eijFjk

FS tensor & gluon field F,, =0,A,—0,A, —ie[A,, A
Chromo-field components E;, = \*E? B; = \*B¢
Gell-Mann matrices Tr(A®A®) = 184 (A2, \0] = 4 fabe e

Improvement and analytic techniques in Hamiltonian lattice gauge theory

Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Approximating gauge fields

» For reasons of gauge symmetry, discretizing A, is fraught with danger
 Instead, define an average A, along a link in directionp as
u = %f# dx - A
« On the lattice, this definition leads to a discretization error since the field at
all points between x & x+
« Since we are considering lattice Hamiltonians, for now we restrict ourselves
to the spatial lattice with latin indices i,j,K...

1 a/2 1 9

A= / dzi[Ai(%) + 2:0;Ai(x) + — 22 Ay(x) + -+ ]
—a/2

4 4

o0 01 Ai(x) +

M)+ S0 AL +

Improvement and analytic techniques in Hamiltonian lattice gauge theory

Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Wilson lines and gauge links

» To avoid the dangers of using A”we use the average to define a gauge link
which is a Wilson line:

Ul — eiea.Az

- Taylor expanding and using relations between A; & A;(x) , we see

Ui(x) =1+ iead;(x) — 622‘}2 Ay(x)Ay(x) + -

* As we will see, while this can reproduce the continuum theory when a=0, at
finite lattice spacing, there will be new interactions in the Hamiltonian

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Commutation relations

« We would like to recover in the continuum
(B (x), A5(x)] =i6i;0a0(x — y)
[Af (x), Aj(x)] =[Ef(x), Ej(x)] = 0

* To see how to define our lattice kinetic term, we should investigate Ela one
way this can be done is through the lattice commutator

€1, U] = €], eieaAm]

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Lattice commutation relations

Using a BCH relation:
e “Be? = B+ B, A] + +[[B, Al, A] + +[[[B, 4], A], A] + - --

It is possible to show:
EF, Un] =[Ef, e¥4n]
=iea&], Am|Un

Check this for yourself tonight!

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Lattice electric field

Now, using the definition,
2 4

A, 2 524, T 54,

We find that the the commutator with the continuum field is:

2
£8, Uy] =ieal€8, AL, + ;—48;A$n 4o AT,

Which implies that to ensure the continuum relations, we should associate:

a e a a’ a
£ = e [Bp — £O7E0 4 -

e

Improvement and analytic techniques in Hamiltonian lattice gauge theory

Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Lattice Kinetic Energy

» With this definition and imposing gauge invariance, we find:

(B ()] ~

g—aTr XE;(%)E;(x) + YE(x)Ui(x)Ei(x + ai)U; (x)]

« Expanding E and U in terms of their continuum fields, we find

K =2YE? 4 X E02F + O(ea?, a?)

- Setting X=1, Y=0 we obtain the KS kinetic term with errors scaling with a2

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Exercise 3: Improved Lattice Kinetic Energy

e What values of X,Y would cancel of all classical a? errors?

K =2XYE? 4+ X E92F + O(ea?, a?)

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
Derivation of KS and Improved Hamiltonians and variational techniques
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Lattice Potential Energy

« Constructed form closed loops of Wilson lines

* The simplest nontrivial Wilson loop is the plaguette:
Py =1 — :ReTr[U,(x)U,(x + aX)UJ (x + ay)U,} (x)]

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
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Lattice Potential Energy

Including Rij and Rji yields:
V = 27 [XPyj(x) + 7 (Rij(x) + Rji(x)]

* Which can be related to the continuum, obtaining:
V ~a®[(X + 4Y)Tr(F}) ‘\K
2
+ = (X + 10Y)Tx(F,{D} + D}}Fyj) + O(e*a®,a")

So if you are satisfied with a? errors, X=1,Y=0 yields the KS Hamiltonian

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
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Exercise 4:

e What values of X and Y will yield an a®? improved Hamiltonian?

V ~a®[(X + 4Y)Tr(F})
2

+ 55 (X + 10Y)Ta(Fy{D} + D3}Fy) + O(e%a®,a")

Improvement and analytic techniques in Hamiltonian lattice gauge theory
Carlsson - PhD thesis, 0309138 [hep-lat]
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Regardless of your choice, you will need to do some math

« e.g.V=Tr(g)
* Floating point or fixed point arithmetic is expensive in qubits and gates

 (Consider the half-adder
(a) (b)

N sSum —— —_—

c D cicarry -

‘ ' /L IT_
l T HPH T HD
_— 1=
UV NN

T Vi

1
b—
(4]

A transmon-based quantum half-adder scheme
25 6/18/2022 Hank Lamm | Viscosity in 3+1d QCD Chatterjee and Roy- PTEP 2015 9, September 2015, 093A02
Described a specific hardware implementation of the general half-adder algorithm



Questions?
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Exercise 5: Implement the Adders

 Take a look at lab_quantum_adder.ipynb
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