Digital quantum simulation tutorial: Schwinger model hopping propagator via phase kickback Quantum Computing Boot Camp 2023 Jefferson Lab

June 26, 2023

In this tutorial, we learn how to effect time evolution for the hopping term of a link in the Schwinger model. We will regard the Hamiltonian to simulate as $\hat{H} = x \sigma_1^- \sigma_2^+ U + \text{H.c.}$, where 1 and 2 refer to the fermions at the left and right sides of the link, and $U = \sum_{E=E_{min}}^{E_{max}-1} |E+1\rangle \langle E|$ is the truncated link operator.

SVD approach to hopping term

- 1. Consider first the toy Hamiltonian $H' = x \sigma_1^- \sigma_2^+ + \text{H.c.}$ and recall $\sigma^+ = |0\rangle \langle 1|, \sigma^- = |1\rangle \langle 0|$. Note how H' is off-diagonal on both of the matter qubits.
 - Draw points for the computational basis states in the $n_1 \times n_2$ plane, and make from them a mathematical graph showing what states are mixed by the application of H'. (An edge joining points $|a\rangle$ and $|b\rangle$ means that $\langle a|H'|b\rangle \neq 0$.)
 - Consider the effect of applying the single-qubit gates X_1 or X_2 on the basis states and how they permute the points in the plane:

Come up with a gate V' which, when applied to the qubits, has the effect of realigning the edge(s) in the graph of H' parallel to the n_1 axis. How would you characterize this graph in terms of being diagonal vs. off-diagonal?

- 2. Now consider another toy Hamiltonian, $H'' = x \sigma_1^- U + \text{H.c.}$, which is off-diagonal on one matter qubit and the entire E register.
 - Draw points for the computational basis states in the $n_1 \times E$ plane, and make from them a mathematical graph showing what states are mixed by the application of H''.
 - Let $\lambda^+ = U + |E_{min}\rangle \langle E_{max}|$ and $\lambda^- = U^{\dagger} + |E_{max}\rangle \langle E_{min}|$ denote cyclic incrementers on the electric field, which are unitary and therefore valid as multiqubit gates. Using λ^- , devise a gate V'' which, when applied to the matter qubit and E register, aligns the graph of H'' parallel to the n_1 axis. You should find that the circuit commutes with the gate found at the end of step (1).
- 3. If all was done correctly, you should have found two unitary transformations V' and V'', which when applied to the original H, transform it as

$$V'V''H(V'')^{\dagger}(V')^{\dagger} = x \sigma_{1}^{-} |1\rangle \langle 1|_{2} (1 - |E_{max}\rangle \langle E_{max}|) + \text{H.c.} \\ = x X_{1} |1\rangle \langle 1|_{2} (1 - |E_{max}\rangle \langle E_{max}|).$$

The transformed Hamiltonian is off-diagonal on a single qubit alone, and can be fully diagonalized with Hadamards on the 1-mode qubit. Separating out the two terms $x Z_1 |1\rangle \langle 1|_2$ and $-x Z_1 |1\rangle \langle 1|_2 |E_{max}\rangle \langle E_{max}|$ (they commute), how would you simulate each one? (What controls are needed?)