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happen, but small enough that we are also still able to partially solve the non-Abelian Gauss

law, simulate it on existing hardware, and post-select on the leftover gauge constraints. This

work, done in collaboration with N. Klco and M.J. Savage, was published in Physical Review

D 101, 074512 (2020).

Then, in chapter 5, we follow an approach that goes much farther in solving non-Abelian

constraints, using what we call a loop-string-hadron (LSH) formulation. This amounts to

deconstructing the theory entirely and reassembling it in a language where charge conser-

vation is made intrinsic. There are still constraints leftover in the LSH formulation, so in

chapter 6, we give the quantum circuits analogous to those developed for U(1), except these

routines check flux conservation along links instead of at sites. These works were both done

in collaboration with I. Raychowdhury and are published in Physical Review D 101, 114502

(2020) and Physical Review Research 2, 033039 (2020).

The remainder of the present chapter is dedicated to reviewing the fundamental properties

of the gauge field theories that we are most interested in simulating. The emphasis is

particularly on fundamentals of Hamiltonian gauge theory, its lattice formulation, and the

implications of gauge constraints. The concepts from quantum computation that are used

are standard textbook material; see, for example, Ref. [35].

1.1 Classical gauge fields in the continuum

Here we summarize the key features of continuum theories, especially as they pertains to

the features lattice formulations must reproduce. This section also serves to set conventions.

The development follows Ref. [36] and Ref. [37].

The theories of interest, such as QED or QCD, are special in that they have notions of

conserved charges. In QED, conservation of charge dictates that the charge of the Universe

is conserved. Particles can be created or destroyed but they must do so in such a way

that equal parts of positive and negative charges are created or destroyed. In QCD, we say

“color” is conserved—quarks can be “red,” “green,” or “blue,” and antiquarks can carry

the corresponding anticolors. The combination of r, g, and b quarks would give a colorless

https://inspirehep.net/literature/1829575

2023/06/26
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combination (no net color). A proton can be thought of as such a state. In any reaction of

particles, no net color can be created or destroyed.

Not only is charge universally conserved, but where there is charge, its fingerprint is

evident in the configuration of the gauge fields. In electrodynamics, this is expressed by

Gauss’s law,

~r · ~E = ⇢ . (1.1)

The requirements of Lorentz invariance and charge conservation constrain how the involved

quantum fields may interact.

The most direct path to constructing continuum gauge field theories is to start with

the principle of local gauge invariance. A Lagrangian for matter fields is first observed to

have a conservation law (total number of particles minus antiparticles, say) associated with

a continuous and global transformation on the fields; the symmetry transformation is then

“promoted” to a local symmetry by insisting that the transformation can be done locally

while still leaving the Lagrangian invariant.

Concretely, the classical Lagrange density is formed from fields  l(x) that can be trans-

formed by symmetry transformations belonging to a Lie group. Local, Lie group gauge

transformations on matter fields  l take the form

 l(x) ! [ei ✏
↵
(x)T↵ ]l

m m(x) (1.2)

⌘ ⌦(✏(x))l
m m(x) , (1.3)

or in matrix/vector notation,  (x) ! ⌦(✏(x)) (x) . (1.4)

Here, l and m are generalized indices for fields that transform under the symmetry.1 ⌦l
m is a

square matrix-valued function of x defining how the fields are locally mixed, with ✏(x) being

real parameters for the gauge transformation function ⌦. The matrices T↵ are matrices in

some representation of the Lie algebra. They are generators of the group and each T↵ labels

1For example,  � l = (q� 1, q� 2, q� 3) for the theory of a single quark flavor, but with the Dirac index �
suppressed since eq. (1.3) does not mix Dirac components. A two-flavor theory of up and down quarks
could have  l = (u1, u2, u3, d1, d2, d3), in which case the T↵ would be block diagonal.

Reference material for

AM lecture on

Introduction to lattice gauge theories
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a distinct transformation. The generators form a Lie algebra under commutation:

[T↵, T�] = iC�
↵�T� (real C�

↵�). (1.5)

The C�
↵� are known as structure constants. We assume the Lie algebra is a direct sum of

commuting compact simple and U(1) subalgebras (cf. §15.2 of [36]).

The principle of local gauge invariance is the requirement that the Lagrange density

constructed from the fields is unchanged by all such transformations in eq. (1.3). A locally

gauge invariant Lagrange density will involve derivatives of the fields, but the issue arises

that spatial derivatives @µ l do not transform simply like  l; @ is not a gauge covariant

operator. For example,

@µ ! @µ (⌦ ) = ⌦(@µ ) + (@µ⌦) . (1.6)

The first term matches the form of eq. (1.3), but we would like to avoid the second term

(which does vanish for global gauge transformations, i.e., constant ⌦). A covariant derivative

is formed by introducing ‘gauge fields’ A↵

µ
(one four-vector field per generator ↵) as follows:

Dµ l = @µ l � iA↵

µ
(T↵)l

m m . (1.7)

This is expressed more compactly by collecting the gauge fields into a matrix-valued field,

Aµ(x) ⌘ A↵

µ
(x)T↵ , (1.8)

Dµ l = @µ l � i (Aµ)l
m m (1.9)

or just Dµ = (@µ � iAµ) . (1.10)

The covariant derivative Dµ l is made to transform like  l by having the gauge fields A↵

µ

undergo simultaneous transformations:

Aµ ! ⌦Aµ⌦
�1 + i⌦(@µ⌦

�1) (1.11)

) Dµ l ! ⌦l
m(Dµ )m (1.12)

or just Dµ ! ⌦Dµ . (1.13)
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To make Aµ a dynamical field too, we will need to couple derivatives of Aµ, but we again

need to avoid the same problem of how spatial derivatives transform. The solution is to form

the field strength tensor using covariant derivatives of A:

Fµ⌫ = i [Dµ, D⌫ ] (1.14)

= @µA⌫ � @⌫Aµ � i [Aµ, A⌫ ] (1.15)

= @µA⌫ � @⌫Aµ + C�
↵�A

↵

µ
A�

⌫
T� (1.16)

F ↵

µ⌫
⌘ @µA

↵

⌫
� @⌫A

↵

µ
+ C↵

��A
�

µ
A�

⌫
(1.17)

Gauge transformations on the field strength are indeed homogeneous:

Fµ⌫ ! ⌦Fµ⌫⌦
�1 (1.18)

or equivalently, F ↵

µ⌫
! (⌦A)↵�F

�

µ⌫
with (⌦A)↵� = r tr(T↵⌦T�⌦

�1) (1.19)

The latter shows how the field strength transforms like a matter field in the adjoint repre-

sentation. To summarize the gauge transformations thus far,

 ! ⌦ (1.20)

Aµ ! ⌦Aµ⌦
�1 + i⌦(@µ⌦

�1) (= i⌦(@µ � iAµ)⌦
�1) (1.21)

) Fµ⌫ ! ⌦Fµ⌫⌦
�1 (1.22)

 , Dµ, Fµ⌫ all transform homogeneously, so as long as we only couple fields via these objects,

it will be trivial to construct locally gauge invariant Lagrangians:

L = L( , Dµ, Fµ⌫ , · · · ) (1.23)

The simplest gauge invariant and Lorentz invariant kinetic Lagrangian for the gauge fields

is known as the Yang-Mills Lagrangian, with

LYM / tr(Fµ⌫F
µ⌫) (1.24)

= g↵�F
↵

µ⌫
F b µ⌫ (1.25)

g↵� = tr(T↵T�) (1.26)
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(where g↵� should not be confused with the Minkowski metric tensor ⌘). The quadratic form

also has the lowest possible mass dimension (Dµ being of mass dimension 1 and Fµ⌫ being

of mass dimension 2). For the groups we consider, we can take

g↵� =
1

2g2
�↵� . (1.27)

The conventionally normalized continuum Lagrangian is then

LYM = � 1

4g2
�↵�F

↵µ⌫F �

µ⌫
= � 1

2g2
tr(�↵�Fµ⌫F

µ⌫) . (1.28)

From this point forward, we will have little to say about the continuum Lagrangians.

Going over to Hamiltonian dynamics, we need conjugate momenta to the gauge fields:

@

@(@⇢A
�

�)

�
F ↵

µ⌫
F µ⌫

↵

�
= 4F ⇢�

�
(1.29)

) @LYM

@(@0A↵

j
)
= ⇧j

↵
= �F 0j

↵
/g2 = F j0/g2 = F0j/g

2 . (1.30)

Note the correspondence of the momenta with the Maxwell electric fields ~E = (�@t ~A �
~r�)/g:

(Maxwell) Aµ = (�, ~A) (1.31)

(Maxwell) ⇧i =
1

g2
(@0Ai � @iA0) (1.32)

) E↵

i
= �g⇧↵

i
. (1.33)

We can also identify the generalization of the Maxwell magnetic field ~B = ~r⇥ ~A/g,

(Maxwell) Bi = ✏ijk(@
jAk � @kAj)/g (1.34)

) B↵

i
= ✏ijkF

↵jk/g . (1.35)

The conjugate momentum ⇧0

↵
evidently vanishes, so A0 is not actually dynamical. In the

canonical formalism, it can therefore be convenient to fix the potential to Weyl gauge,

A0 ⌘ 0 (1.36)

) ⇧j

↵
= g�2Ȧj

↵
. (1.37)
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Spatial gauge transformations ⌦(x) = ⌦(~x) are still a symmetry since these preserve the

gauge fixing condition. The Hamiltonian density resulting from Legendre transformation is

then

H =
g2

2
⇧j

a
⇧a j +

1

2g2
tr(FijF

ij) . (1.38)

1.2 Quantization

The gauge fields are quantized by stipulating the equal-time commutation relations:

[Â↵

i
(~x), ⇧̂j

�
(~y)] = i �↵

�
�j
i
�(~x� ~y) (1.39)

Gauge transformations must now be realized in operator form—we need symmetry operators

to e↵ect the matrix multiplications. Infinitesimally, the requirement on the operator gauge

fields is (for ⌦ = 1 + i ✏↵T↵ + · · · )

�Â↵

µ
= @µ✏

↵ � i (ÂA

µ
)↵�✏

� (1.40)

= (D̂A

µ
✏)↵ (1.41)

The covariant divergences Di⇧i

↵
generate the infinitesimal gauge transformations on the

gauge fields:

T̂↵ ⌘ (D̂i⇧̂
i)↵ (1.42)

= �(D̂iÊ
i)↵/g (1.43)


(�i )

Z
ddx ✏↵(~x)(D̂i⇧̂

i(~x))↵ , Â�

j
(~y)

�
=


(�i )

Z
ddx ✏↵(~x)T̂↵(~x) , Â�

j
(~y)

�
(1.44)

= @j✏
�(~y)� i ÂA

j
(~y)��✏

�(~y) (1.45)

= (D̂A

j
✏(~y))� (1.46)

(with a discarded boundary term). The Di⇧i

↵
are themselves a representation of the Lie

group, satisfying the exact same algebra of the generators in a distributional sense:
Z

ddx ✏↵(x)
h
(D̂i⇧̂

i)↵(x) , (D̂j⇧̂
j)�(y)

i
= ✏↵(y) iC�

↵�(D̂i⇧̂
i(y))� (1.47)

or just
h
(D̂i⇧̂

i)↵(x) , (D̂j⇧̂
j)�(y)

i
= iC�

↵�(D̂i⇧̂
i(y))� �(~x� ~y) (1.48)
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So the unitary operator to e↵ect the matrix transformation ⌦✏(~x) = exp[i ✏↵(~x)T↵] on Â

would be the quantum (Hilbert space) operator exp[�i
R
ddx ✏↵(~x)T̂↵(~x)] :

⌦̂(✏) ⌘ ei
R
d
d
x ✏

↵
(x)T̂↵(x) (1.49)

) ⌦̂†(✏)Âj(~y)⌦̂(✏) = ⌦✏(~y)Âj⌦
†
✏
(~y) + i⌦✏(~y)@j⌦

†
✏
(~y) (1.50)

where Âj is in any representation and the dagger placement is not accidental. In particular,

note that ⌦̂(✏) is a functional of the spatial gauge transformation function ✏(x)—it is not

a field, it is a single quantum operator fixed by ✏, and it lacks “group indices”—while the

classical matrix ⌦✏(~x) does carry group indices, is still a function of space, and acts like a

c-number as far as quantum operations are concerned.

Later we will consider fermionic matter. Here we have

� ̂l = i ✏↵(T↵)l
m ̂m (1.51)

J0

↵
=  †T↵ (1.52)

[Ĵ0

↵
(t, ~x), Ĵ0

�
(t, ~y)] = iC�

↵�Ĵ
0

�
(t, ~x)�(~x� ~y) (1.53)

[(�i )Ĵ0

↵
(t, ~x),  ̂l(t, ~y)] = i (T↵)l

m ̂m(t, ~x)�(~x� ~y) (1.54)

Combining the above, we have the Gauss law operators that generate gauge transforma-

tions and satisfy the same Lie algebra:

Ĝ↵(x) = (D̂i⇧̂
i(x))↵ +  ̂†(x)T↵ ̂(x) = �1

g
(D̂iÊ

i(x))↵ + Ĵ0

↵
(x) (1.55)

)
Z

ddx ✏↵(x)
h
Ĝ↵(x) , Ĝ�(y)

i
= ✏↵(y) iC�

↵�Ĝ(y)� (1.56)

or just
h
Ĝ↵(x) , Ĝ�(y)

i
= iC�

↵�Ĝ(y)� �(~x� ~y) (1.57)

To summarize, using the Gauss law operators Ĝ↵(x) we can construct the symmetry operators
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⇥̂ that e↵ect the gauge transformations introduced in the classical theory as follows:

⇥̂(✏) ⌘ ei
R
d
d
x ✏

↵
(x)Ĝ↵(x) (1.58)

⇥̂†(✏)Âj(~x)⇥̂(✏) = ⌦✏(~x)Âj(~x)⌦
†
✏
(~x) + i⌦✏(~x)@j⌦

†
✏
(~x) (1.59)

⇥̂†(✏)F̂µ⌫(~x)⇥̂(✏) = ⌦✏(~x)F̂µ⌫(~x)⌦
†
✏
(~x) (1.60)

⇥̂†(✏)F̂ µ⌫

↵
(~x)⇥̂(✏) = [⌦A

✏
(~x)]↵

�F̂ µ⌫

�
(~x) (1.61)

⇥̂†(✏) ̂l(~x)⇥̂(✏) = [⌦✏(~x)]l
m ̂m(~x) (1.62)

1.3 Gauge fields on the lattice

For any numerical simulation, the continuum of degrees of freedom of a field theory must

be truncated. This is traditionally done by defining the fields only on a discrete (d+1)-

dimensional lattice of points in Euclidean spacetime. It is standard to use a Cartesian

geometry with lattice spacing a, as it preserves the largest possible symmetry subgroup of

the (d+1)-dimensional rotation group. A volume truncation is also necessary; it is common

to use a (d+1)-dimensional box, with length Lx along d “spatial” directions and Lt along the

“time” direction. For Euclidean simulations, singling out a direction to call “time” is due to

the fact that the (d+1)-dimensional Euclidean path integral is identified with the partition

function of the same system in d spatial dimensions, in thermal equilibrium at temperature

1/Lt. Ground state properties are thus extracted by taking the limit of large Euclidean time

extent.

The lattice is itself a regularization scheme for the continuum quantum field theory. The

nonzero lattice spacing a means that particles can only be resolved with momenta below the

scale ⇡/a—an ultraviolet cuto↵—and the finite volume also implies a cuto↵ on wavelength at

the scale of the box size Lx—an infrared cuto↵. These two limits are important considerations

for what physics will be accessible, e.g., Lx must be larger than 1 femtometer to study the

proton, while a must be much smaller than 1 femtometer.

At a more practical level, latticization renders the domain of the functional integral finite-

dimensional so that the functional integral is itself well-defined and amenable to Monte Carlo
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integration. In addition, while the continuum limit is formally taken by sending a ! 0, in

practice the continuum limit is approached by instead tuning parameters in the lattice action

to ‘critical values’ at which correlation lengths diverge (in lattice units) [38]. In this way, the

e↵ects of lattice discretization are made small or negligible relative to the probed physics.

In the subsequent chapters, we will be primarily considered with the UV structure of

the theory, meaning the local lattice degrees of freedom themselves. These depart from

traditional lattice field theory because we are most interested in Hamiltonian mechanics, in

which time remains continuous and only space is discretized, with a lattice spacing as. Of

course, we also work with Hilbert spaces rather than classical field configurations. For gauge

theories, we take the Weyl gauge A0 = 0 so that gauge fields have only spatial components.

The details of extrapolating to the continuum and ameliorating lattice “artifacts” will not

be taken up because Hamiltonian simulation problems are still in such a nascent stage of

development. It is not even known how di↵erent these processes will be when working with

spatially-discretized Hamiltonians in real time, as opposed to spatiotemporally-discretized

actions in imaginary time.

On the lattice, matter field transformations take the form they did in the continuum,

 (x) ! ⌦(x) (x) (1.63)

at all sites x. For derivative fields, we have to choose what we mean by ‘derivative’ on the

lattice. A simple choice is the forward derivative @+
µ
f(x) = (f(x+1)�f(x))/as. The discrete

operator @+
µ
su↵ers a problem like that encountered in the continuum,

@+
µ
(⌦(x) l(x)) = ⌦(x)@+

µ
 l(x) + (@+

µ
⌦(x)) l(x+ eµ) (1.64)

[cf. discussion around (1.6)], but the second term is arguably worse now, due to the de-

pendence on the translated value  l(x + eµ). A covariant derivative is formed this time by

introducing group matrices U(x, x+ eµ):

Dµ (x) = a�1

s
[U(x, x+ eµ) (x+ eµ)�  (x)] (1.65)
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These matrices are prescribed the simultaneous transformations

U(x, x+ eµ) ! ⌦(x)U(x, x+ eµ)⌦
�1(x+ eµ) . (1.66)

The U(x, x + eµ) are referred to as link variables. For brevity, we can also take Uµ(x) ⌘

U(x, x+ eµ) and Uµ(x)�1 = U(x+ eµ, x). The link variables are most closely related to the

continuum Aµ by path-ordered products in the continuum, which have the same transfor-

mation rules:

P exp


�i

Z
x

z

dyµAµ(y)

�
! ⌦(x)P exp


�i

Z
x

z

dyµAµ(y)

�
⌦�1(z) (1.67)

) Uµ(x, x+ eµ) ⇠ P exp

"
�i

Z
x

x+eµ

dyµAµ(y)

#
. (1.68)

Also by analogy with the continuum, the transformation rules of the path ordered product

imply that gauge invariant Wilson loops from the continuum have lattice counterparts formed

by multiplying together Uµ’s along links to form closed contours. The smallest such loop is

called a plaquette, given by

Uµ⌫(x) = Uµ(x)U⌫(x+ eµ)U(x+ e⌫)
�1

µ
U(x)�1

⌫
(1.69)

Uµ⌫(x) ! ⌦(x)Uµ⌫(x)⌦
�1(x) (1.70)

) tr(Uµ⌫) ! tr(Uµ⌫) . (1.71)

Using the plaquettes and lattice covariant derivative, the Wilson gauge action with näıve

fermions is

S = �
X

xµ⌫

1

2g2ra4
s

tr(1� Uµ⌫x)

�
X

xµ

1

2as

⇥
 ̄(x)�µUµ(x, x+ eµ) (x+ eµ)�  ̄(x+ eµ)�

µU †
µ
(x, x+ eµ) (x)

⇤
. (1.72)

The continuum limit of the Wilson action reproduces the classical action. The näıve lattice

action is so named because it is known to su↵er from so-called fermion “doublers”, but

addressing them is outside the scope of this dissertation and a variety of improvements

are already known and regularly employed (for example, staggered [39], clover [40], domain

wall [41–44], overlap [45], Ginsparg-Wilson [46], and fixed point [47, 48] fermions).
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1.4 Quantized Hamiltonian formulation

In this section we review the basic setup of Hamiltonian lattice gauge theory. This largely

follows Chapter 4 of Ref. [37] on lattice gauge fields. Ref. [49] is also an instructive contem-

porary resource.

In Hamiltonian lattice gauge theory, we work with Hilbert spaces corresponding to ele-

ments of the gauge group G, one such space for each link. In a path integral formulation,

we integrate over all classical matrices U⇢ in some irrep ⇢ of the gauge group. Where neces-

sary, we take ⇢ to be a unitary representation. We can think of these classical matrices as

positions on the group manifold G in the particular representation ⇢. The local link Hilbert

space Hlink can then be constructed from the eigenstates of a position operator Û⇢. The

operator-matrix eigenvalue relation is

Û⇢ |gi = |giD⇢(g) , i.e., Û⇢
m0

m |gi = |giD⇢(g)m0
m (1.73)

where D⇢(g) is a Wigner matrix for g, in the representation ⇢. With respect to Hilbert space

operations, the eigenvalue matrix behaves as a c-number. Note that even if we had started

from a path integral for a particular irrep, we can freely choose ⇢ in (1.73) to be any irrep

we like, with the action of Û⇢ defined as given.

In the path integral formulation, the Lagrangian is defined to be invariant under local

gauge transformations. The generators are of course the matrices T↵ introduced at the start.

What are needed now are the quantum generators that will induce the right transformations

on link variables.

The e↵ect of a lattice gauge transformation ⌦(x) is to rotate the link operators just like

the classical transformation:

Û⇢(x, i)
⌦! Û⇢(x, i)0 = ⌦⇢(x)Û⇢(x, i)⌦⇢(x+ ei)

�1 . (1.74)

We will often use L (R) to refer to the refer to the “left” (“right”) end of the link, namely

x (x+ ei) for link Ui(x).
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We will denote the Hilbert space symmetry transformations that perform these local

gauge transformations for us by ⇥̂L and ⇥̂R. ⇥̂L(g) will be defined to shift the eigenvalue of

Û⇢ by left-multiplication with g:

Û⇢⇥̂L(g) |hi ⌘ D⇢(gh)⇥̂L(g) |hi (1.75)

) ⇥̂L(g)
�1Û⇢⇥̂L(g) = D⇢(g)Û⇢ . (1.76)

Similarly, ⇥̂R(g) is defined so that the eigenvalue of Û⇢ is right-multiplied by g�1:

Û⇢⇥̂R(g) |hi ⌘ D⇢(hg�1) |hi (1.77)

) ⇥̂R(g)
�1Û⇢⇥̂R(g) = Û⇢D⇢(g�1) . (1.78)

Defined this way, the left and right transformations each provide representations of the group,

namely

⇥̂L(g1)⇥̂L(g2) = ⇥̂L(g1g2) , (1.79)

⇥̂R(g1)⇥̂R(g2) = ⇥̂R(g1g2) . (1.80)

The generators of left and right rotations are those operators L̂↵ and R̂↵ such that

⇥̂L(g) = exp(i!↵L̂↵) , (1.81)

⇥̂R(g) = exp(i!↵R̂↵) . (1.82)

Since the ⇥̂L/R have the same multiplication table as the elements of G, the generators must

obey the same Lie algebra as the generators T↵:

[L̂↵, L̂�] = iC�
↵�L̂� , (1.83)

[R̂↵, R̂�] = iC�
↵�R̂� . (1.84)

The ⇥̂L/R operators e↵ectively translate the link operator through the group manifold.

The operators L̂↵ and R̂↵ are then infinitesimal generators of translations along that mani-

fold. This makes it natural to ask what the commutation relations are for Û⇢ with L̂↵ and

R̂↵. The properties given above are all we need to infer the commutation relations.
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First, by acting [⇥̂L(g), Û⇢] on an arbitrary state |hi and factoring out Û⇢, we obtain the

operator identity

[⇥̂L(g), Û
⇢] = ⇥̂L(g)(I

⇢ �D⇢(g))Û⇢ . (1.85)

Now taking g = exp(i!↵T↵) with !↵ ⌧ 1, the left-hand side is i!↵[L̂↵, Û⇢] +O(!)2. On the

right-hand side, we have D⇢(g) = exp(i!↵T ⇢

↵
), and since the factor (I⇢ �D⇢(g)) is already

O(!), the leading order behavior is obtained by dropping O(!) corrections to ⇥̂L(g). Thus,

i!↵[L̂↵, Û
⇢] +O(!)2 = �i!↵T ⇢

↵
Û⇢ +O(!2) (1.86)

From here we can read o↵ the canonical commutation relation [L̂↵, Û⇢] = �T ⇢

↵
Û⇢.

We can then do an analogous exercise using ⇥̂R(g). This time we find

[⇥̂R(g), Û
⇢] = Û⇢(D⇢(g)� I⇢)⇥̂R(g) (1.87)

Using infinitesimals as was done with ⇥̂L, we find [R̂↵, Û⇢] = Û⇢T ⇢

↵
. The results of both

calculations are summarized as

[L̂↵, Û
⇢] = �T ⇢

↵
Û⇢ , (1.88a)

[R̂↵, Û
⇢] = +Û⇢T ⇢

↵
. (1.88b)

To be sure, T ⇢

↵
are matrices in group space, while Û⇢ have both group space and Hilbert

space structure.

So far left and right generators have been discussed as separate objects. However, they

are related by parallel transport, which will be important for characterizing states later.

A right rotation ⇥̂R(h) on a state can be expressed in terms of a left rotation in a trivial

way by noting

⇥̂R(h) |gi = |gh�1i = ⇥̂L(gh
�1g�1) |gi . (1.89)

To relate right and left generators, however, we are after an operator relation and not just a

ket-dependent equivalence. To proceed we will concentrate on infinitesimal transformations

since that is enough to tell us about the generators.
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We start by taking h = ei ⌘
↵
T↵ for small ⌘. Then the left-hand side of 1.89 expands out

to

⇥̂R(h) |gi = (1̂ + i ⌘↵R̂↵ + · · · ) |gi . (1.90)

As for the right-hand side, we first need to expand the argument of ⇥̂L as

gh�1g�1 = 1� i ⌘↵gT↵g
�1 + · · · . (1.91)

We know that if the linear term of this group element is put into the form i!↵T↵, then the

linear term of the left rotation ⇥̂L will simply be i L̂↵!↵. Here we will need the automorphism

property relating the adjoint representation to any other representation (Appendix A of

Ref. [37])

(⌦⇢)�1T ⇢

↵
⌦⇢ = (⌦A)↵

�T ⇢

�
(1.92)

or equivalently ⌦⇢T ⇢

↵
(⌦⇢)�1 = T ⇢

�
(⌦A)�↵. The linear term of the argument to ⇥̂L is therefore

�iT↵DA(g)↵�⌘�, from which we see that !↵ = �DA(g)↵�⌘�. Thus, the right-hand side of

eq. (1.89) is given by

⇥̂L(gh
�1g�1) |gi = [1̂ + i L̂↵(�DA(g)↵�⌘

�) + · · · ] |gi (1.93)

= (1̂� i ⌘↵L̂�(Û
A)�↵ + · · · ) |gi . (1.94)

Comparing this with eq. (1.90), we finally see the parallel transport relation of left and right

generators:

R̂↵ = �L̂�(Û
A)�↵ . (1.95)

We have motivated a parallel transport relationship between L̂ and R̂, but the real

test is if R̂ as defined has all the properties we expect. A natural starting point would

be the canonical commutation relations. To show that (1.88) works out, we will need the

automorphism property again as well as the fact that elements of Û from any representations
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commute with each other. Proceeeding,

[R̂↵, Û
⇢
�
�] = �[L̂�(Û

A)�↵, Û
⇢
�
�]

= �[L̂�, Û
⇢
�
�](ÛA)�↵ � L̂�[(Û

A)�↵, Û
⇢
�
�]

= (T ⇢

�
)�

✏Û⇢
✏
�(ÛA)�↵ � 0

= (T ⇢

�
(ÛA)�↵)�

✏Û⇢
✏
�

= (Û⇢T ⇢

↵
(Û⇢)�1)�

✏Û⇢
✏
�

= (Û⇢T ⇢

↵
)�

� (1.96)

) [R̂↵, Û
⇢] = Û⇢T ⇢

↵
, (1.97)

as required.

Another check is that left and right generators commute:

�[R̂↵, L̂�] = [L̂�(Û
A)�↵, L̂�]

= [L̂�, L̂�](Û
A)�↵ + L̂�[(Û

A)�↵, L̂�]

= iC�
��L̂�(Û

A)�↵ + L̂�(T
A

�
)��(Û

A)�↵

= iC�
��L̂�(Û

A)�↵ + L̂�(�iC�
��)(Û

A)�↵

= 0 . (1.98)

Yet another important test is reproducing the Lie algebra. Using a couple applications

of a product rule for commutators, one finds

[R̂↵, R̂�] = [R̂↵,�L̂�(Û
A)��]

= �L̂�[R̂↵, (Û
A)��]� [R̂↵, L̂�](Û

A)��

= L̂�[L̂�(Û
A)�↵, (Û

A)��]� 0

= L̂�

⇣
[L̂�, (Û

A)��](Û
A)�↵ + L̂�[(Û

A)�↵, (Û
A)��]

⌘

= L̂�[L̂�, (Û
A)��](Û

A)�↵ + 0 . (1.99)

The last expression is easily shown to equal i L̂�C�
"�(ÛA)"�(ÛA)�↵. Here we note that the
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invariance of the structure constants under any rotation ⌦A is expressed by

C�
"�(⌦

A)"�(⌦
A)�↵ = C�

�↵(⌦
A)�� , (1.100)

giving

L̂�[L̂�, (Û
A)��](Û

A)�↵ = i L̂�C
�
�↵(Û

A)��

= iC�
↵�(�L̂�(Û

A)��)

= iC�
↵�R̂� . (1.101)

We have therefore seen that [R̂↵, R̂�] = iC�
↵�R̂�, as required.

Finally, the parallel transport relationship can be used to show that the quadratic

Casimirs at either end of a link are equal. This follows by noting that the parallel transport

relation is equivalently expressed by

R̂↵ = �(ÛA �1)↵�L̂
� . (1.102)

Therefore,

R̂↵R̂
↵ = L̂�(Û

A)�↵(Û
A �1)↵�L̂

� (1.103)

= L̂�L̂
� . (1.104)

Considering a particular link (x, x+ei) within a Cartesian lattice, the operators associated

with it are Û⇢

i
(x) = Û⇢(x, x + ei), L̂i

↵
(x), and R̂i

↵
(x + ei). We have fixed Weyl gauge, so

Û⇢(x, x+ e0) = 1 and only the spatial links are dynamical and a↵ected by the residual gauge

symmetry. Both the L̂↵ and R̂↵ from a given link obey the Lie algebra of the group. Summing

all of them around a site then gives generators for all links joined to the site simultaneously,

T̂↵(x) = a�d

s

X

i

(L̂i

↵
(x) + R̂i

↵
(x)) (1.105)

The factors a�d

s
are inserted to get the same mass dimension as the covariant divergences

(D̂i⇧̂i)↵ from the continuum, which the above operators must correspond to given how they
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generate gauge transformations on all links emanating from a site. These operators satisfy

lattice analogues of the continuum commutation relations:

[T̂↵(~x), T̂�(~y)] = iC�
↵�T̂�(~x)a

�d

s
�~x,~y . (1.106)

To explicitly see the correspondence with the covariant divergences (D̂i⇧̂i)↵ from the

continuum, let us identify gauge fields A⇢(x, x + ei) with link operators by Û⇢(x, x + ei) ⌘

exp(�i asÂ⇢(x, x+ ei)). Then we have

(L̂i

↵
(x) + R̂i

↵
(x)) =

⇣
L̂i

↵
(x)� (ÛA)�↵(x� ei, x)L̂�(x� ei)

⌘

=
⇣
L̂i

↵
(x)�

⇣
��
↵
� i asÂ

�(x� ei, x)(T
A

�
)�↵ +O(a2

s
)
⌘
L̂�(x� ei)

⌘

=
⇣
as@

�
i
L̂i

↵
(x) + i asÂ

A(x� ei, x)
�
↵L̂�(x� ei) +O(a2

s
)
⌘

= as@
�
i
L̂i

↵
(x) + asC

�
↵�Â

�(x� ei, x)L̂�(x� ei)) +O(a2
s
) . (1.107)

Or, alternatively,

(L̂i

↵
(x) + R̂i

↵
(x)) = �as@

+

i
R̂i

↵
(x)� C�

↵�A
�(x, x+ ei)R̂

i

↵
(x+ ei) +O(a2

s
) . (1.108)

The above two results show that the lattice generators T̂↵ can be identified with D̂i⇧̂i

↵
in the

continuum limit if we identify ⇧̂i

↵
with a1�d

s
L̂i

↵
or with �a1�d

s
R̂i

↵
.

Summarizing these observations, L̂i

↵
and R̂i

↵
can essentially be thought of as being ⇧̂i

↵

evaluated at infinitesimal distances to either side of the site,

⇧̂i

↵
(~x+ � ei) = a1�d

s
L̂i

↵
(~x) ,

⇧̂i

↵
(~x� � ei) = �a1�d

s
R̂i

↵
(~x) ,

0 < � ⌧ 1 .

Note, however, that at nonzero as the conjugate momenta identified as such do not commute.
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Instead, we have only that

h
a1�d

s
L̂i

↵
(~x), a1�d

s
L̂j

�
(~y)

i
= asiC

�
↵�(a

1�d

s
L̂i

�
(~x))(a�d

s
�~x,~y)�

ij (1.109)

⇠ asiC
�
↵�(a

1�d

s
L̂i

�
(~x)) �(~x� ~y)�ij , (1.110)

h
�a1�d

s
R̂i

↵
(~x), �a1�d

s
R̂j

�
(~y)

i
= asiC

�
↵�(a

1�d

s
R̂i

�
(~x))(a�d

s
�~x,~y)�

ij (1.111)

⇠ asiC
�
↵�(a

1�d

s
R̂i

�
(~x)) �(~x� ~y)�ij . (1.112)

These commutators are suppressed by a factor of as, so the requirement that [⇧̂↵(~x), ⇧̂�(~y)] =

0 is recovered in the continuum limit.

For matter fields, gauge transformations at a site should take the form

⇥̂�1(g) ̂l⇥̂(g) = D⇢(g)l
m ̂m (1.113)

⇥̂�1(g) ̂⇥̂(g) = D⇢(g) ̂ . (1.114)

If Ĵ0

↵
(x) are Noether charge densities such that

[Ĵ0

↵
(x),  ̂l(y)] = �(T ⇢

↵
)l
m ̂m(x) �~x,~y/a

d

s
, (1.115)

[Ĵ0

↵
(~x), Ĵ0

�
(~y)] = iC�

↵�Ĵ
0

�
(~x)�~x,~y/a

d

s
, (1.116)

then complete generators of local gauge transformations are given by the lattice Gauss law

operators Ĝ↵:

Ĝ↵(x) = a�d

s

dX

i=1

(L̂↵,i(x) + R̂↵,i(x)) + Ĵ0

↵
(x) . (1.117)

Like in the continuum, examples of such a charge density would be  †(x)T ⇢

↵
 (x) for fermionic

fields. Then the symmetry operator associated to an aggregate gauge transformation parametrized

by ✏↵(~x) would be

⇥̂[✏] = exp

"
i
X

~x

ad
s
✏↵(~x)Ĝ↵(~x)

#
=

Y

~x

exp
h
i ad

s
✏↵(~x)Ĝ↵(~x)

i
. (1.118)

When we speak of a theory being gauge invariant, we mean foremost that its Hamiltonian

commutes with the Gauss law operators. The Gauss law operators then give a collection of
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constants of motion, and we will always consider “allowed” or “physical” lattice states to be

those that are invariant under gauge transformations, with

Ĝ↵(x) |physi = 0 (1.119)

being the lattice realization of D̂iÊi

↵
|physi = gĴ0

↵
|physi from the continuum.2 However, one

can in principle change these constants of motion to describe static charge sources, giving

rise to charge superselection sectors that are dynamically isolated from each other.

For calculations, one must eventually choose a basis, and in Hamiltonian lattice gauge

theory it is common to use one that diagonalizes electric fields rather than their conjugate

gauge fields. This is because the Gauss law constraints given above are expressed in terms of

electric fields, so characterizing and working in the subspace of allowed states is easier. The

quantum numbers characterizing a link state correspond to some complete set of commuting

operators (CSCO) for the generators.

For SU(2), the familiar CSCO is { ~J · ~J, J3}; ~J · ~J has angular momentum eigenvalues

j(j + 1) for half-integers j and completely characterizes any irreducible representation of

SU(2), while J3 can have eigenvalues m = j, j � 1, · · · ,�j. Recalling that a link comes with

mutually commuting left and right electric fields,

{L̂↵L̂
↵, L̂3, R̂↵R̂

↵, R̂3} (1.120)

are all mutually commuting, but we also have that the quadratic Casimir is a link invariant,

L̂↵L̂↵ = R̂↵R̂↵. Putting this all together, a basis of SU(2) irreducible representation or

“irrep” states can be labeled as

|j,mL,mRi . (1.121)

For SU(3), an additional Casimir invariant would be available, d↵��T↵T�T�. A CSCO is

then given by the two Casimir operators, along with isospin t2
1
+ t2

2
+ t2

3
, isospin projection t3,

2A proper physical Hilbert space should generally respect more symmetries than just gauge constraints,
such as translational invariance, parity, etc., but this dissertation is primarily concerned with the gauge
constraints.
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and hypercharge t8. The latter three, not being invariants, have distinct quantum numbers

on each side of a link, so that states would be of the form

|p, q, IL, I3,L, YL, IR, I3,R, YRi (1.122)

[with p and q labeling the irreducible representation of SU(3).] We will not have much to

say about SU(3) in this dissertation, but details of the formalism have been discussed and

worked out, e.g., in Refs. [25, 50, 51].

1.5 Schwinger boson formulation

The Hamiltonian generates dynamics among states that satisfy Gauss’s law, i.e.,

Ĝ↵(x) |physi = 0 for all x, ↵. (1.123)

Dynamics of this sort is usually described using redundant but local degrees of freedom.

Alternatively, these states can be described in terms of arbitrary gauge-invariant Wilson loop

and Wilson line operators acting on some reference state. Characterizing states this way,

however, leads to a highly overcomplete basis; mutually dependent loops satisfy Mandelstam

constraints [52–54], which are nonlocal and notoriously hard to solve. A central aim of the

remainder of this work is to encode dynamics using local degrees of freedom that both satisfy

Gauss’s law and are orthogonal, starting from multiplets of harmonic oscillators [55].

The method of Schwinger bosons [56] is a way of providing an explicit realization of the

algebraic structure in terms of simple harmonic oscillators, satisfying the familiar commuta-

tion relations

[âi, â
†
j
] = �ij , (1.124)

[âi, âj] = [â†
i
, â†

j
] = 0 . (1.125)

This follows from the fact that, given generators T↵, the same Lie algebra is obeyed by

&
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