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By Scott Aaronson

Quantum computers would be exceptionally fast
at a few specific tasks, but it appears that for most
problems they would outclass today’s computers
only modestly. This realization may lead to a new
fundamental physical principle

in the satirical weekly the Onion. By exploiting a bizarre

“Schrédinger’s Pants” duality, the article explained, these
non-Newtonian pants could paradoxically behave like formal wear and
casual wear at the same time. Onion writers were apparently spoofing
the breathless articles about quantum computing that have filled the
popular science press for a decade.

A common mistake—see for instance the February 15,2007, issue of
the Economist—is to claim that, in principle, quantum computers could
rapidly solve a particularly difficult set of mathematical challenges
called NP-complete problems, which even the best existing computers
cannot solve quickly (so far as anyone knows). Quantum computers
would supposedly achieve this feat not by being formal and casual at
the same time but by having hardware capable of processing every pos-
sible answer simultaneously.

If we really could build a magic computer capable of solving an NP-
complete problem in a snap, the world would be a very different place:
we could ask our magic computer to look for whatever patterns might
exist in stock-market data or in recordings of the weather or brain activ-
ity. Unlike with today’s computers, finding these patterns would be com-
pletely routine and require no detailed understanding of the subject of the
problem. The magic computer could also automate mathematical creativ-

/4 H aggar Physicists Develop ‘Quantum Slacks,” ” read a headline

March 2008
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NP-hard

Bridges connecting islands

You are given a list of 1slands connected by bridges and you want a tour that visits each
island exactly once. Finding a solution is hard as n increases. In modern language, this
problem due to Euler eventually now known as ‘traveling salesman’ problem. This is
NP hard problem.

However, if given a solution to this problem, it can be verified in polynomial time. A
problem 1s said to be NP-hard if everything in NP can be transformed in polynomial
time. A problem 1s said to be NP-complete if it i1s in both NP and NP-hard. These are
the hardest problems for any Turing machine. We call it complete, since solution to any
problem [in polynomial time] would imply solution to any other problem.

So, what happens if a problem 1s NP-hard?



Paradigm shift

Necessity Is the mother of invention

 We need to formally revise the definition of the computer itself! But,
what can it be? Nature is governed either by classical or quantum
mechanics. So, can it be a quantum computer instead of classical
computer? We don’t have any other version of information theory!

e Originated in the 1970s! Made popular by Feynman in 1980s.
Quantum mechanics was developed in the 1920s.



Can we solve all problems?

Unfortunately no!

* There is a quantum version of NP known as QMA. There are many
problems in Physics (even in lower dimensions!) that belong to
this class. Most likely won’t be solved even by a quantum
computer. For example - ground state of Fermi Hubbard model.

« There is a complexity class which is probabilistic version of
deterministic P-class. This is called BPP [bounded probabilistic
polynomial]. The quantum version of BPP is known as BQP.

« BQP — bounded-error quantum polynomial time is the class of
decision problems solvable by a quantum computer In

polynomial time to some error €!



Harder Problems
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Rough outline

* Qubits, qudits, gumodes, Bloch sphere representation.
 Quantum gates, Entangled States, No-Cloning theorem, Fidelity
e Quantum Fourier transform (QFT)

« Universality and gate counts methods LUNCH!

 Variational Quantum Eigensolver (VQE) for anharmonic oscillator

e O(3) model in 1 + 1-dimensions with qubits
« Simple time evolution circuits with quantum gates and Pauli decomposition
 Two general Hamiltonian simulation methods for approximation exp(—iHt)

» Alternate approach to QC - Using quantum harmonic oscillators (qumodes)

* Bose-Hubbard model qumodes with Strawberry Fields simulator.



State-of-the-art — Tensor Networks

« Hamiltonian version: Approximate the ground state I.e., h//) =
Z C; ... li, . iy) of a model with local Hamiltonian of N spins in fewer

coefficients than 2V , O(N).

 Lagrangian version: Approximate the partition function using tensor
networks considering decomposition of Boltzmann weight (truncate if
necessary) and then coarse-graining by performing successive iterations
using singular-value-decomposition (SVD).



Scalability is a major’ problem!

 Higher-dimensions are harder. Less progress. There is no known
(classical) efficient idea similar to MPS in 3+1 dimensions. Time
evolution of QFTs (almost impossible) to study in these cases.

 MPS can only faithfully represent ground state of local Hamiltonians for
1d quantum systems. There are networks that can represented states
of critical spin chains too. But not in higher dimensions.

* The ingenious algorithms MPS etc can only go so far. Limitation goes

back to quote by Feynman, 1982. ‘Nature is quantum-mechanical, we
cannot simulate it classically in an efficient manner’.
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Quantum Computation

Quantum Mechanical Computers

By Richard P. Feynman

Introduction

his work is a part of an effort to
I analyze the physical limitations
of computers due to the laws of
physics. For example, Bennett' has
made a careful study of the free energy
dissipation that must accompany com-
putation. He found it to be virtually
zero. He suggested to me the question
of the limitations due to quantum me-
chanics and the uncertainty principle. 1
have found that, aside from the obvious
limitation to size if the working parts
are to be made of atoms, there is no
fundamental limit from these sources
either.

We are here considering ideal ma-
chines; the effects of small imperfec-
tions will be considered later. This study
is one of principle; our aim is to exhibit
some Hamiltonian for a system which
could serve as a computer. We are not
concerned with whether we have the
most efficient system, nor how we
could best implement it.

Since the laws of quantum physics
are reversible in time, we shall have to
consider computing engines which
obey such reversible laws. This prob-
lem already occurred to Bennett!, and
to Fredkin and Toffoli?, and a great deal
of thought has been given to it. Since it
may not be familiar to you here, I shall
review this, and in doing so, take the
opportunity to review, very briefly, the
conclusions of Bennett?, for we shall
confirm them all when we analyze our
quantum systen.

It is a result of computer science that
a universal computer can be made by a
suitably complex network of intercon-
nected primitive elements. Following
the usual classical analysis we can imag-
ine the interconnections to be ideal
wires carrying one of two standard volt-
ages representing the local 1 and 0. We
can take the primitive elements to be
just two, NOT and AND (actually just
the one element NAND = NOT AND
suflices, for if one input is set at 1 the
output is the NOT of the other input).
They are symbolized in Fig. 1, with the
logical values resulting on the outgoing
wires, resulting from different com-
binations of input wires.

From a logical point of view, we must
consider the wires in detail, for in other
systems, and our quantum system in
particular, we may not have wires as

OPTICS NEWS

such. We see we really have two more
logical primitives, FAN OUT when two
wires are connected to one, and EX-
CHANGE, when wires are crossed. In
the usual computer the NOT and NAND
primitives are implemented by transis-
tors, possibly as in Fig. 2.

What is the minimum free energy that
must be expended to operate an ideal
computer made of such primitives?
Since, for example, when the AND op-
erates the output line, ¢”is being deter-
mined to be one of two values no matter
what it was before the entropy change is
In(2) units. This represents a heat gen-
eration of kT In(2) at temperature 7. For
many years it was thought that this rep-
resented an absolute minimum to the
quantity of heat per primitive step that
had to be dissipated in making a cal-
culation. )

The question is academic at this time.
In actual machines we are quite con-
cerned with the heat dissipation ques-
tion, but the transistor system used ac-
tually dissipates about 10'°%T! As
Bennett® has pointed out, this arises
because to change a wire’s voltage we
dump it to ground through a resistance;
and to build it up again we feed charge,
again through a resistance, to the wire.
It could be greatly reduced if energy

Richard P. Feynman is a profes-
sor of theoretical physics at Cali-
fornia Institute of Technology.
This article is based on his ple-
nary talk presented at the CLEO/
IQEC Meeting in 1984.
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could be stored in an inductance, or
other reactive element.

However, it is apparently very diffi-
cult to make inductive elements on sili-
con wafers with present techniques.
Even Nature, in her DNA copying ma-
chine, dissipates about 100 k7T per bit
copied. Being, at present, so very far
from this kT In(2) figure, it seems ridic-
ulous to argue that even this is too high
and the minimum is really essentially
zero. But, we are going (o be even more
ridiculous later and consider bits writ-
ten on one atom instead of the present
10'" atoms. Such nonsense is very en-
tertaining to professors like me. I hope
you will find it interesting and cnter-
taining also.

What Bennett pointed out was that
this former limit was wrong because it
is not necessary to use irreversible
primitives. Calculations can be done
with reversible machines containing
only reversible primitives. If this is done
the minimum free energy required is
independent of the complexity or num-
ber of logical steps in the calculation. If
anything, it is kT per bit of the output
answer.

But even this, which might be consid-
ered the free energy needed to clear the
computer for further use, might also.be
considered as part of what you are go-
ing to do with the answer—the informa-
tion in the result if you transmit it to
another point. This is a limit only
achieved ideally if you compute with a
reversible computer at infinitesimal
speed.

Computation with a
reversible machine

We will now describe three reversible
primitives that could be used to make a
universal machine (Toffoli*). The first is
the NOT which evidently loses no in-
formation, and is reversible, being re-
versed by acting again with NOT. Be-
cause the conventional symbol is not
symmetrical we shall use an X on the
wire instead (see Fig. 3a).

Next is what we shall call the CON-
TROLLED NOT (see Fig. 3b). There are
two entering lines, a and b and two
exiting lines, a”and b” The a’is always
the same as a, which is the control line.
If the control is activated @ = 1 then the
out b’ is the NOT of b. Otherwise b is
unchanged, b” = b. The table of values

11



Approaches

* Discrete-variable quantum computing: Use qubits to perform
computations. There are three steps in general: 1) Initial state-
preparation, 2) Implementing unitary evolution using O(1) qubit gates, 3)
Measurements.

 Continuous-variable quantum computing: Use of gumodes (harmonic
oscillator) to carry out state preparation with some cutoff, time evolution
using CV gates, and measurements.

12



States

e Qubits:d =2, |0),|1) [spin-1/2]
e Qudits:d > 2, say |[¢)=a|0)+pf|1)+y|2) [spin-1]

e Qumodes: d = o0

QUESTION: How many (c)bits are in a qubit?

13



General state

* We can represent an arbitrary state on the Bloch sphere by:
|w) = cos(8/2)|0) + e?sin(6/2)| 1)

* We can construct the density matrix and show that:

[y | = ;( +17. 0)

1)

QUESTION: Why do we have 6/2 rather than 6?

14



Reminder: Little endian vs. Big endian

» Textbooks use Big endian i.e., |00>, 01>, [10>, |11>. This is big-endian notation.
The most significant bit is entered first from left.

* QISKIT and CPU architectures uses little endian notation i.e., |00>, [10>, [01>, |
11>. The least significant bit is left.

15



Quantum gates (unitary!)
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Classical vs. Quantum

A[ B[ AND (A-B) | OR (A+B) | XOR(A® B) A) | |B) | |A) | |[A&® B)
i i’ ‘f 0) |10} |19 | [0
1[0 0 I 1 0) | 11) | |0) 1)
1|1 1 1 0 1> O> 1> 1>

1) 1 | 1) 0)
Classical: Boolean Algebra

CNQOT gate (CX gate)

T
¥

Combination of 2 CNOT gates C) o

CX=10)0|@I+|1X1|®@X CZ=[0)0|®@I+[1N1|®Z
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Other gates

Operator

Matrix

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7 /8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)

I

I

|

I

I

an e

1 0 0 0
01 0 0
0 0 0 1
0 0 1 0
1 0 0 ©
01 0 0
00 1 0
0 0 0 -1
o 1 0 0 0
0 0 1 0
01 0 0
< 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

18



“Special” features of QM

* Superposition [Hadamard] - Most of the algorithms applies this. It is quantum version of
“fair coin toss’.

* Entanglement [One example is — Hadamard followed by CX]

« Arbitrary states cannot be cloned (copied). No-cloning theorem.

%@?: Ulwrlor — N> [¥)

L[1oy = |11

Uloo> = |eoy
B i, U (152417) - L{ji> o)
equialek o

R asaateR
U Oo>+ ») g Q>+|;>) Flbj

ok epuad = |o0> + ei>+ 07 +]1
G Cobodiodias 9

N\~ —
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QISKIT implementation

* Open-source SDK developed by IBM which acts as a simulator. For our purposes, QISKIT
IS good enough. You can play around on ibm_qg hardware by creating account etc.

* We will use Google Colab (and Mathematica couple of times) to code.

20



Create a state, visualise, and measure it - QISKIT
Demonstration

A random two-qubit state

21



GHZ (Greenberger-Horne-Zeilinger) state

One of the two ways to entangled three-qubits. Given by:

%(mom + 111))

We will soon implement this in QISKIT.

22



Another possibility: W-state

Given by:

3

We will construct this state as:

L( 1001) + 010 + | 100))

Ry(¢3)

e

3 s

23

¢, = 1.91063



Fidelity

 Measure of how close two quantum states are. What do you think is the fidelity between GHZ
and W-state?

» Fidelity for two density operators are defined as:

F(p,o) = Tr(\/\/ﬁa\/ﬁ

 This simplifies to overlap2 if they are pure states. For ex: consider two pure states,

1
|0),——(]|0) + | 1)). What is the fidelity?
2



Quantum FT

The most famous quantum algorithm is probably Shor’s factoring
algorithm. It has an exponential speedup over the best known

classical algorithm. We now discuss QFT which forms an integral
part of the factoring algorithm.

G
ng = —L g x\) e/
(N =7
&\,«ﬂw/;:m,\ Fo\mw %% 12 a2

25




Coppontt /99— Shor fadwing algonitlon
N-| Al
@\FT/X> Anmab (Z e/‘), 4/ 2&7>
N\ yz=o
[ohs doke N=2 ie  one gk

QFT ) = C R SEARPLGAFATE )0)

\’
ZWLEO X |

@o> + emx’ i>>

0. %y ) = Z A









Ti@ bed— davnead M,%A)Tms ot an FET

-------------------------------------------------------------------------

- H I * * -
—IP(%) H I ’ ] u

P(3) P(5) H—{H I s
______________________ PR POPE AR |




More on gate costs and universality

 One needs to know which gate set are universal for quantum computation. On
our Intel chips, NAND and NOR gates are universal. What is the quantum
analog?

« To satisfy the universality for quantum gates, we have to satisfy few
conditions. 1) Create superposition, 2) Create entanglement, 3) Cannot just be
real gates, 4) Belongs to Clifford group i.e., {CNOT, Hadamard, P} since we
know by Gottesmann-Knill theorem that it can be simulated efficiently in
polynomial time on classical computer.

 What are our options then? It is clear that we need CNOT can help us get past
(2). We now desire one-qubit gates. There is a mathematical result which says
that any 2x2 unitary matrix can be written in rotation gates. Rx, Ry, Rz. So,
CNOT+ seems like a good option and it indeed is. IBM hardware also has this
gate set!



More on gate costs and universality

 We also know that error-rate of one qubit gates are much less than two-qubit
gates. So in any practical calculation, the dominate cost/error will come from
CNQOT gates. Hence, we often use this as metric to compare the costs.

 So, now the goal is to write any unitary matrix in terms of CNOT, and rotation
gates and count how many CNOTs are needed for n qubits.

 This is a well-researched problem. To understand this, we have to understand
— Quantum Shannon Decomposition (QSD) which was introduced in the
paper Shende et al. quant-ph/0406176



Definitions needed for QSD

ra/’lO(mXoJC No CNOT  needed . We hae

wwwzvzwm‘
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Definitions needed for QSD

Notedomn -
— 1
—(Re [— = —(Re [ Re{ ‘ID




QSD quant-ph/0406176

Any n qubit gate can be decomposed into three multiplexed

rotations and four generic (n — 1) qubit operators. Though this

looks simple, this is pretty messy for n > 2. The goal is to count
the number of CNOTs needed.

et R,

Y
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QSD quant-ph/0406176

 There is a theoretical lower-bound on # CNOT gates needed which is
given by:

1
—(@4"=3n-1
4( )

* |In the paper referenced above, it was shown that optimised QSD they
Implemented costs roughly :

23 3
43 2

 Lower bound is about half of the best implementation we have at the
moment. [f we have time at the end of the day: we will try to do this
exercise in QISKIT.




Quantum Fourier transform - QISKIT Demonstration

» But let’s go back to QFT and see how this works in QISKIT. We
will also check that it is unitary.



Quantum Algorithms cont.

A very popular NISQ-era hybrid algorithm is variational quantum eigensolver
(VQE). The steps are:

1. Prepare initial state on QC i.e., |0)
2. Obtain good ansatz by acting with some U(®)i.e., |w) = U|0)

3. Measure energy on QC and optimise the parameters ® using classical
optimisers

4. Repeat until convergence.

37



VQE representation

Qubit Hamiltonian A
Choice of ansatz
Initial parameters 90

New set of 0 values

v v

Energy Evaluation

Parametrized

quantum circuit

Classical Optimizer

A

Repeat until
convergence

to obtain

ming E(0)

State
preparation

Expectation ‘
estimation

38
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Qubit H, VQE etc.

e Pauli matrices are special — {X,Y,Z,I} forms a complete
basis. Though, not the most efficient basis. Usually Hamiltonians
for VQE are represented by Pauli strings. Either through some
transformation like JW or BK or matrix decomposition method
which we will soon see. VQE has been extensively used to study

various molecules in quantum chemistry like H,, BeH, etc.

PHYSICAL REVIEW X

Highlights Recent Subjects Accepted Collections Authors Referees Search Press About Editorial Team N

Scalable Quantum Simulation of Molecular Energies

P.J.J. O’'Malley et al.

Phys. Rev. X 6, 031007 — Published 18 July 2016 u m
Article References Citing Articles (464) m
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Anharmonic oscillator - Set up

SetDirectory[NotebookDirectory[]];
nbits = 3; (*number of qubits®)
n = 2 \nbits;
g = 0.02;
A1 = Table[lf[(j - i) == 1, Sqart[i], 0], {i, n}, {j, n}]; (FfAnnihilation operator®)
X1 = Sqrt[0.5] (A1\[ConjugateTranspose] + A1); (*Position operator in E basis*)
H1A[A_, X_] := A\[ConjugateTranspose] . A + ldentityMatrix[n]/2 -
g MatrixPower[X, 3]; (*Cubic anharmonic Hamiltonian in E basis®)
H = H1A[A1, X1]; ("Make Hamiltonian to export*)
hamName = "HO"; (*Set Hamiltonian name for file*)
Export["ham_" <> hamName <> ".txt", H,
"Table"]; ("*Export Hamiltonian to be read by our QISKIT program!*)

]

If you don’t have Mathematica, copy the matrix to a local file from https://shorturl.at/btwFG

Link expires: 26 June, 2023
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Decompose matrix

Assume we don’t know the expression just that it forms a complete basis.

Let’s build the formula for decomposing any Hermitian matrix H in terms of
Paulis.

CT = KroneckerProduct;
X = PauliMatrix[1];
Y = PauliMatrix[];
Z = PauliMatrix[3];

H = 0.23 CT[X, CT[Z, Y]] + 0.45 CT[Z, CT[Y, X]]

| .



Anharmonic oscillator

QISKIT Demonstration.

42



O(3) model in 1+1

arXiv: 2210.03679 [quant-ph]

. The Hamiltonian is given by (8 = 1/g?):

H = Z ﬁz n; - Nj,

(1,])

 \We can construct this matrix for some fixed value of lmaX

The Hamiltonian for a N-site latticeisa (I, + 1)* x (L., + 1)*" matrix. We can

consider model with or without a f-term. As we saw before, we need to express the H in
terms of qubits which is often done use Jordan-Wigner or Bravyi-Kitaev transformations.

43



2210.03679 [quant-ph]

O(3) model

arXiv

Hamiltonian

Second layer
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Results

* At the moment, VQE is at times, no better than exact diagonalization. But,
there are various improvements and it will improve in future.

2 "7 —%— QMPS
3.7300 1 —¥— Q-S2D
- _é_ Imax = %
3.7295
—4 _é_ lmax = g
= =
~ 3.7290 1 ~
= € —5F
3.7285 e - -
_6 -
3.7280
-7 E__l__,_____g = ' = =
5 10 15 20
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Hamiltonian Simulation

 The most important application of quantum computers for Physics
will be to carry out time evolution. The problem of implementing

exp(—iHt) is known as HS problem. We say that a HS is efficient if

N-qubit H can be simulated within some error € using O(N)
operations/gates. There has been more than two decades of intense
research on how to do this efficiently and various quantum
algorithms have been developed. We will hardly touch the surface.
You will hear more about them during the bootcamp.

46



Time evolution of quantum systems

Let us start with a very simple system. Suppose, we have spin-1/2 particle
each on two sites with some H below, we would need two qubits to initialise

the state say, |00). Now suppose the 4x4 Hamiltonian of this two-site model
IS given by:

H=X®X)+(Y®Y)

We want to do time evolution of this system i.e., exp(—iH7). We have to
represent this unitary operator with quantum (unitary) gates. Note than any
Hamiltonian can be written entirely in terms of Pauli strings.

47



Time evolution of quantum systems

« Note that we have to keep dt sufficiently small, so we have to repeat
the circuit below N times where N = t/dt. As we can see, we need

about 8V unitary gates (4 one-qubit, and 4 two-qubit) for this simple
Hamiltonian and two sites!

o H-—eo—R,(—a)—e—H|—o

A
1/
A
1/
A\
1/
A
1

R.(«)
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Quick check!

CT = KroneckerProduct;

X = PauliMatrix[1];

Y = PauliMatrix[2];

Z = PauliMatrix[3];

CNOT = {{1, 0,0, 0}, {0, 1,0,0}, {0,0,0,1},{0,0,1,0}};

HAD = {{1/\[Sqrt]&, 1/\[Sart]&}, {1/\[Sqrt]L, -(1/\[Sqrt])}};
HY = {{1/\[Sqrt]&, -I/\[Sart]R}, {I/\[Sqrt]L, -(1/\[Sqrt]2)}};

XXYYv1 =CNOT . CT[HAD, IdentityMatrix[2]] . CNOT . CT[MatrixExp[I (\[Alpha]/
) Z], MatrixExp[I (-\[Alpha]/2) Z]] . CNOT . CT[HAD, IdentityMatrix[2]] . CNOT //
FullSimplify;

XXYYv2 = (CT[HAD, HAD] . CNOT . CT[IdentityMatrix[2], MatrixExp[I (\[Alpha]/
2) Z]]. CNOT . CT[HAD, HAD]) . (CT[HY, HY] . CNOT . CT[IdentityMatrix[2],
MatrixExp[I (\[Alpha]/2) Z]] . CNOT . CT[HY, HY]) // FullSimplify:

XXYYv] == XXYYVvR == MatrixExp[I (KroneckerProduct[ X, X] +
KroneckerProduct[Y, Y]) \[Alpha]/2]

49



Basic idea
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QUESTIONS?
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Not efficient!

* |t might seem that the basic idea is straightforward and we can carry on
with this. However, it is easy to check that if N increases, the
decomposition in terms of Paulis is not efficient. It scales terribly with V.

 One thing to note about Pauli matrices and strings is that they are 1-
sparse.

« A matrix is said to be d-sparse if it has at most d non-zero entries in any
given row/column. A 2-sparse matrix looks like:

52



Sparse-row-computable (SRC)

« Wide class of Hamiltonians are SRC. It means the matrix is d-sparse and
there exists efficient algorithms such that f(x, j) = the column number of
™ non-zero in row x. For matrix on earlier slide, f(1,0) =0 and
f(1,1) = 2 [this tells where the non-zero is]. We also need to know the

element i.e., ny efficiently i.e., with only O(poly (n)). We can define the
action of two oracles as:

O, (N1x)10) = |x) | f(x, /)

Oy(N1x) 1y)10) = [x)|y) [ Hyy)
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Efficient decomposition

We do not want to do: H = Zaij but would rather like to do
J

N
H = Z H] where each HJ is 1-sparse. Note that 1-sparse matrices are

j=1
broader class. Every Pj IS 1-sparse, but not every 1-sparse can be
written in terms of Pauli matrices.

Side note: There are two ways to deal with the unitary operator. One is
Lie-Suzuki-Trotter product formula which splits into product of unitary or
we can use Taylor series and truncate it, and use oracles to simulate the
time evolution. We won’t discuss the latter and will only briefly discthe
Trotter method.
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QUESTIONS?

58



The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.

- Quote by Sidney Coleman
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Alternate approach

Encode information in QHO/photons

 Can represent qubits and qudits effectively since the Hilbert
space is “theoretically” infinite-dimensional. It has been shown to
be useful for constructing error-correcting codes. There are
different prescriptions to encode a qubit in an oscillator.

* One such method is to represent qubits as single photon, this is
sometimes useful since practically all the required components
(for a single photon quantum computer) are already available. In
addition, noise is a well-understood problem in quantum optics.
This is known as ‘dual-rail’ representation.

|0),, :=[01) [ 1), :=110).
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CV vs. Qubit

But for the moment let’s focus on the infinite-dimensional bosonic operators.
There are now simulators for gumodes (photonic simulator) like Bosonic

QISKIT, Strawberry Fields etc.

Cv

Qubit

Basic element

Qumodes

Quadrature operators Z, p

Qubits

Relevant : A A
: Pauli operators 6, 0y, 7,
ittt Mode operators g, &'
Coherent states |a)
Common e :
Squeezed states |z) Pauli eigenstates [0/1) , |£) , |£2)
states
Number states |n)
Common Rotation, Displacement, Squeezing, X
: P , q g Phase Shift, Hadamard, CNOT, T Gate
gates Beamsplitter, Cubic Phase
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Bosons/Fermions
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CV states
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State family Displacement Squeezing
Vacuum state |0) a=0 z2=0
Coherent states |a) a€C z2=0
Squeezed states |z) a=0 z€C
Displaced squeezed acC 2 EC
states |a, 2)
X eigenstates |x) a€C, =0 0o
X eigenstates |x =0,r—

8 X = 2\/§ Re(a)

aeC,

p eigenstates |p)

= 2\/§Im(a)

¢=m,r— 00

arXiv: 1804.3159

Gate Unitary Symbol
Displacement  D,(a) = exp(ad] — a*d;) DI
Rotation R;(¢p)=exp(i¢h;) R
Squeezing S;(z) = exp(3(z*a% —24!?)) St
Beamsplitter SXSI;J((GGE;?‘B ;&} _eaa)) |BS |
Cubic phase  V;(y) =exp(i % %3) —VE




Bose Hubbard Model with CVs
(arXiv:1801.06565)

 For fermionic systems, like Ising model, the qubit approach is generally
preferred but for models with bosonic degrees of freedom (where the local
Hilbert space dimension is infinite), the more natural setting is one of oscillator
(Qqumodes). Suppose, we consider the famous Bose-Hubbard model where the

H is given by:
_ LU Ah —
H—Jz<lj>aiaj+2Uzini(ni 1)

where we have used create /annihilation operators and the number operators.
The first term denotes the hopping of bosons between neighbouring sites and
second term is the on-site potential term.
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Two-site model
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4 O(t/ﬁ)

. We can write the time-evolution operator as:

= [BS (0,¢) (K(NR(-r) ® K(r)R(—r))]N + O (£*/N) ;
0 =—JtIN,¢p = n/2, r = — Ut/2N

where BS is the beam-splitter gate, K is the Kerr gate (non-Gaussian), and R is the rotation gate. These

gates are qumodes equivalent of the qubit gates we saw before. For example, K(k) = exp(ikﬁz).

Constructing these gates are major undertaking in quantum photonics labs where the photon is
modelled as an oscillator.
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Time evolution

* Two steps of evolution can be achieved by the following circuit.

BS

BS

e Let’'s try it out using Xanadu’s Strawberry Fields photonics

simulator.
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Not just 1!

* In the example we just considered, we had one set of creation and annihilation

operator i.e., a,aT at each lattice site. The subscript labelled the site they
belonged to.

 But we can have more than one QHO at each site. Consider that there are two
sets of Bose operators at each site. Let us denote them by a, b respectively. In

this case, we then have 7 =a'a+ b'h. It turns out that we can define
operators such as

|
K, = a'b?, K :=ba, K5 = E(H + [) and some of the interesting physical

Hamiltonians can be written these operators. These operators form

representation theory of 81t(1,1) algebra. These might provide better ways to
approach gquantum computing of models with bosonic d.o.f and this is also
equally interesting to pursue.

* In addition, there are also hybrid based approach which makes use of both
qubits and continuous variables.



Conclusions

 We are entering a new era where as quantum computers become more capable,
we can start solving ‘some’ problems not possible with current computers.
However, this is not anytime soon. Since, QM is quite restrictive unlike classical
computing, the progress might not be smooth.

 For now, VQE+variants is sort of state-of-the-art. This will improve in coming
decade with more qubits (with error-correction) and better algorithms.
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