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• Ask questions anonymously in the Google doc link on #general 
channel of Slack. 


• Feel free to also contact for any non-academic questions. 


• raghav@jlab.org , Office# A 227  


• Especially contact for research questions.

Welcome!
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You are given a list of islands connected by bridges and you want a tour that visits each 
island exactly once. Finding a solution is hard as  increases.  In modern language, this 
problem due to Euler eventually now known as ‘traveling salesman’ problem. This is 
NP hard problem. 

However, if given a solution to this problem, it can be verified in polynomial time. A 
problem is said to be NP-hard if everything in NP can be transformed in polynomial 
time. A problem is said to be NP-complete if it is in both NP and NP-hard. These are 
the hardest problems for any Turing machine. We call it complete, since solution to any 
problem [in polynomial time] would imply solution to any other problem. 

So, what happens if a problem is NP-hard? 

n

Bridges connecting islands 
NP-hard 

4



• We need to formally revise the definition of the computer itself! But, 
what can it be? Nature is governed either by classical or quantum 
mechanics. So, can it be a quantum computer instead of classical 
computer? We don’t have any other version of information theory!   


• Originated in the 1970s! Made popular by Feynman in 1980s. 
Quantum mechanics was developed in the 1920s. Why did it take 
over fifty years to think about quantum mechanical computers? 

Paradigm shift  
Necessity is the mother of invention
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• There is a quantum version of NP known as QMA. There are many 
problems in Physics (even in lower dimensions!) that belong to 
this class. Most likely won’t be solved even by a quantum 
computer. For example - ground state of Fermi Hubbard model. 


• There is a complexity class which is probabilistic version of 
deterministic P-class. This is called BPP [bounded probabilistic 
polynomial]. The quantum version of BPP is known as BQP. 


• BQP — bounded-error quantum polynomial time is the class of 
decision problems solvable by a quantum computer in 
polynomial time to some error !ϵ

Can we solve all problems? 
Unfortunately no!
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• Qubits, qudits, qumodes, Bloch sphere representation. 


• Quantum gates, Entangled States, No-Cloning theorem, Fidelity


• Quantum Fourier transform (QFT)


• Universality and gate counts methods


• Variational Quantum Eigensolver (VQE) for anharmonic oscillator 


•  model in -dimensions with qubits 


• Simple time evolution circuits with quantum gates and Pauli decomposition


• Two general Hamiltonian simulation methods for approximation 


• Alternate approach to QC - Using quantum harmonic oscillators (qumodes) 


• Bose-Hubbard model qumodes with Strawberry Fields simulator. 

O(3) 1 + 1

exp(−iHt)

Rough outline  
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• Hamiltonian version: Approximate the ground state i.e.,  = 
 of a model with local Hamiltonian of  spins in fewer 

coefficients than , O(N). 

• Lagrangian version: Approximate the partition function using tensor 
networks considering decomposition of Boltzmann weight (truncate if 
necessary) and then coarse-graining by performing successive iterations 
using singular-value-decomposition (SVD). 

|ψ⟩
∑

i1,⋯,iN

Ci1,⋯,iN | i1, ⋯, iN⟩ N

2N

State-of-the-art — Tensor Networks
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• Higher-dimensions are harder. Less progress. There is no known 
(classical) efficient idea similar to MPS in 3+1 dimensions. Time 
evolution of QFTs (almost impossible) to study in these cases. 


• MPS can only faithfully represent ground state of local Hamiltonians for 
1d quantum systems. There are networks that can represented states 
of critical spin chains too. But not in higher dimensions. 


• The ingenious algorithms MPS etc can only go so far. Limitation goes 
back to quote by Feynman, 1982. ‘Nature is quantum-mechanical, we 
cannot simulate it classically in an efficient manner’. 

Scalability is a `major’ problem!
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Quantum Computation
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• Discrete-variable quantum computing: Use qubits to perform 
computations. There are three steps in general: 1) Initial state-
preparation, 2) Implementing unitary evolution using O(1) qubit gates, 3) 
Measurements. 


• Continuous-variable quantum computing: Use of qumodes (harmonic 
oscillator) to carry out state preparation with some cutoff, time evolution 
using CV gates, and measurements. 

Approaches 
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• Qubits:    [spin-1/2]


• Qudits:    [spin-1]


• Qumodes: 

d = 2, |0⟩, |1⟩

d > 2, say |ϕ⟩ = α |0⟩ + β |1⟩ + γ |2⟩

d = ∞

States 

QUESTION: How many (c)bits are in a qubit?
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• We can represent an arbitrary state on the Bloch sphere by: 
 
                 


• We can construct the density matrix and show that:     
       

                 

|ψ⟩ = cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩

|ψ⟩⟨ψ | =
1
2 (𝕀 + ⃗n . ⃗σ)

General state 

QUESTION: Why do we have  rather than ?θ/2 θ
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• Textbooks use Big endian i.e., |00>, |01>, |10>, |11>. This is big-endian notation. 
The most significant bit is entered first from left. 


• QISKIT and CPU architectures uses little endian notation i.e., |00>, |10>, |01>, |
11>. The least significant bit is left. 

Reminder: Little endian vs. Big endian
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Quantum gates (unitary!) 

| + ⟩ =
1

2 ( |0⟩ + |1⟩)
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Classical vs. Quantum 

CNOT gate 
Classical: Boolean Algebra

(CX gate)

       CX = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ X CZ = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ Z
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Combination of 2 CNOT gates



Other gates 
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• Superposition [Hadamard] - Most of the algorithms applies this. It is quantum version of 
`fair coin toss’.


• Entanglement [One example is — Hadamard followed by CX]  


• Arbitrary states cannot be cloned (copied). No-cloning theorem. 
 
 

``Special” features of QM
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Cloning: U/4) 10) -> 14)/4)
Proof:U/10) = 1117

(100) =1007

By linearity, U (**) =1007)
equivalentto

~ (*11) (0) =()(**)
Notequal

=

10
+10+1)

↳ Contradiction



• Open-source SDK developed by IBM which acts as a simulator. For our purposes, QISKIT 
is good enough. You can play around on ibm_q hardware by creating account etc. 


• We will use Google Colab (and Mathematica couple of times) to code. 

QISKIT implementation
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Create a state, visualise, and measure it - QISKIT 
Demonstration
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A random two-qubit state 



GHZ (Greenberger–Horne–Zeilinger) state 

One of the two ways to entangled three-qubits. Given by:


                 


We will soon implement this in QISKIT. 

1

2 ( |000⟩ + |111⟩)
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Another possibility: W-state 

Given by:


            


We will construct this state as: 


1

3 ( |001⟩ + |010⟩ + |100⟩)
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ϕ3 = 1.91063



• Measure of how close two quantum states are. What do you think is the fidelity between GHZ 
and W-state? 


• Fidelity for two density operators are defined as: 
 
 
                                                           


• This simplifies to  if they are pure states. For ex: consider two pure states, 

. What is the fidelity?

F(ρ, σ) = Tr( ρσ ρ

overlap2

|0⟩,
1

2
( |0⟩ + |1⟩)

Fidelity 



• The most famous quantum algorithm is probably Shor’s factoring 
algorithm. It has an exponential speedup over the best known 
classical algorithm. We now discuss QFT which forms an integral 
part of the factoring algorithm. 

Quantum FT 

Discrete Fourier Transform

, eztijk/ny=1

Quantum Fourier transform is same

butdifferentmotation.

25



Quantum Fourier Transform

Coppersnth 194 -> Show factoring algorithm

QFT/x) =no ( e2xixy/N/y))
Let's take N=2 i.2 bit.

&FTY =

I (10) +eirc*(2))e2i[0.]

-(10) + e :xx, 13)
[0.x1.um) =E,"
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at? he
General form:

Ii ...jn) -(0) +e40.jn1)* ....

i
*(10) +etio.js/)

we willimplement thisin RISKL.
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Gatecomplexity ofQFT *(!-!)
->A follower by P =(0ei)4-1) controlled P

->n gates
->I followed by
(n-2) controller P

an 2m -> (-1) gates

i =m+) +swAP gatesi =1
=O(n2).
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The bestclassical algorithms such as FFT

use O(n2") gates. -> EXPONENTIAL

SPEED UP.

in # of operations

Question:Does QFTincrease or decrease

entanglement?
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• One needs to know which gate set are universal for quantum computation. On 
our Intel chips, NAND and NOR gates are universal. What is the quantum 
analog? 


• To satisfy the universality for quantum gates, we have to satisfy few 
conditions. 1) Create superposition, 2) Create entanglement, 3) Cannot just be 
real gates, 4) Belongs to Clifford group i.e., {CNOT, Hadamard, P} since we 
know by Gottesmann-Knill theorem that it can be simulated efficiently in 
polynomial time on classical computer. 


• What are our options then? It is clear that we need CNOT can help us get past 
(2). We now desire one-qubit gates. There is a mathematical result which says 
that any 2x2 unitary matrix can be written in rotation gates. Rx, Ry, Rz. So, 
CNOT+ seems like a good option and it indeed is. IBM hardware also has this 
gate set! 

More on gate costs and universality 



• We also know that error-rate of one qubit gates are much less than two-qubit 
gates. So in any practical calculation, the dominate cost/error will come from 
CNOT gates. Hence, we often use this as metric to compare the costs. 


• So, now the goal is to write any unitary matrix in terms of CNOT, and rotation 
gates and count how many CNOTs are needed for  qubits. 


• This is a well-researched problem. To understand this, we have to understand 
— Quantum Shannon Decomposition (QSD) which was introduced in the 
paper Shende et al. quant-ph/0406176

n

More on gate costs and universality 



Definitions needed for QSD
For 1 qubit: No CNOTneeded. We have

what is alled decomposition.-

-

-It- ------

il
circuitform ofU =e R2() Ry(B) ReCYS

Before moving
to n-qubitswithn1, we

new some definitions.
↳QuAwium MULTIPLEXORS.

We demoteitby . Itist,blockdiagonal
form.

u = I
Uo

n)
Simplectexample is Quantum Multiplexor an

two-qubits. Any guesses??



Definitions needed for QSD

0

CNOT== I(ii)
Flips the second (data) bit if thefirst

(SELECT) bitis 11.

How to implement Rz(00) O Rz(0) by:
- .

--
Notation:

-
I
--



• Any  qubit gate can be decomposed into three multiplexed 
rotations and four generic  qubit operators. Though this 
looks simple, this is pretty messy for . The goal is to count 
the number of CNOTs needed. 

n
(n − 1)

n > 2

QSD  quant-ph/0406176



• There is a theoretical lower-bound on # CNOT gates needed which is 
given by:  
 

                                  


• In the paper referenced above, it was shown that optimised QSD they 
implemented costs roughly : 
 

                                  


• Lower bound is about half of the best implementation we have at the 
moment. If we have time at the end of the day: we will try to do this 
exercise in QISKIT. 

1
4

(4n − 3n − 1)

23
48

4n −
3
2

2n

QSD  quant-ph/0406176



Quantum Fourier transform - QISKIT Demonstration

36

• But let’s go back to QFT and see how this works in QISKIT.  We 
will also check that it is unitary. 



• A very popular NISQ-era hybrid algorithm is variational quantum eigensolver 
(VQE). The steps are: 
 
1.  Prepare initial state on QC i.e.,  
 
2.  Obtain good ansatz by acting with some i.e.,  
 
3. Measure energy on QC and optimise the parameters  using classical 
optimisers  
 
4. Repeat until convergence. 

|0⟩

U(Θ) |ψ⟩ = U |0⟩

Θ

Quantum Algorithms cont. 
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VQE representation
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• Pauli matrices are special —   forms a complete 
basis. Though, not the most efficient basis. Usually Hamiltonians 
for VQE are represented by Pauli strings. Either through some 
transformation like JW or BK or matrix decomposition method 
which we will soon see. VQE has been extensively used to study 
various molecules in quantum chemistry like  etc. 


•

{X, Y, Z, I}

H2, BeH2

Qubit H, VQE etc. 
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Anharmonic oscillator - Set up 
SetDirectory[NotebookDirectory[]];

nbits = 3; (*number of qubits*)

n = 2^nbits;

g = 0.02;

A1 = Table[If[(j - i) == 1, Sqrt[i], 0], {i, n}, {j, n}];  (*Annihilation operator*)

X1 = Sqrt[0.5] (A1\[ConjugateTranspose] + A1); (*Position operator in E basis*)

H1A[A_, X_] := A\[ConjugateTranspose] . A + IdentityMatrix[n]/2 - 

   g MatrixPower[X, 3]; (*Cubic anharmonic Hamiltonian in E basis*)

H = H1A[A1, X1]; (*Make Hamiltonian to export*)

hamName = "HO"; (*Set Hamiltonian name for file*)

Export["ham_" <> hamName <> ".txt", H, 

  "Table"]; (*Export Hamiltonian to be read by our QISKIT program!*)

40

If you don’t have Mathematica, copy the matrix to a local file from https://shorturl.at/btwFG 

Link expires: 26 June, 2023



Assume we don’t know the expression just that it forms a complete basis. 
Let’s build the formula for decomposing any Hermitian matrix  in terms of 
Paulis.  
 
 
CT = KroneckerProduct; 


X = PauliMatrix[1];  

Y = PauliMatrix[2];  

Z = PauliMatrix[3];  

H = 0.23 CT[X, CT[Z, Y]] + 0.45 CT[Z, CT[Y, X]]

H

Decompose matrix
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Anharmonic oscillator

QISKIT Demonstration. 
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• The Hamiltonian is given by ( ) : 
 

                                        


• We can construct this matrix for some fixed value of   
 
The Hamiltonian for a -site lattice is a  matrix. We can 
consider model with or without a -term. As we saw before, we need to express the H in 
terms of qubits which is often done use Jordan-Wigner or Bravyi-Kitaev transformations. 

β = 1/g2

Ĥ =
1

2β ∑
i

L2
i − β∑

⟨i,j⟩

ni ⋅ nj,

lmax.

N (lmax. + 1)2N × (lmax. + 1)2N

θ

arXiv: 2210.03679 [quant-ph]  

O(3) model in 1+1

43



arXiv: 2210.03679 [quant-ph]  

O(3) model 
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• At the moment, VQE is at times, no better than exact diagonalization. But, 
there are various improvements and it will improve in future. 

Results 

β = 0.1 β = 10
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• The most important application of quantum computers for Physics 
will be to carry out time evolution. The problem of implementing 

 is known as HS problem. We say that a HS is efficient if 
-qubit H can be simulated within some error  using  

operations/gates. There has been more than two decades of intense 
research on how to do this efficiently and various quantum 
algorithms have been developed. We will hardly touch the surface. 
You will hear more about them during the bootcamp. 

exp(−iHt)
N ϵ 𝒪(N)

Hamiltonian Simulation
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• Let us start with a very simple system. Suppose, we have spin-1/2 particle 
each on two sites with some  below, we would need two qubits to initialise 
the state say, . Now suppose the 4x4 Hamiltonian of this two-site model 
is given by:  
 
                            
 
 
We want to do time evolution of this system i.e., . We have to 
represent this unitary operator with quantum (unitary) gates. Note than any 
Hamiltonian can be written entirely in terms of Pauli strings. 

H
|00⟩

H = (X ⊗ X) + (Y ⊗ Y )

exp(−iHt)

Time evolution of quantum systems

47



• Note that we have to keep  sufficiently small, so we have to repeat 
the circuit below  times where . As we can see, we need 
about  unitary gates (4 one-qubit, and 4 two-qubit) for this simple 
Hamiltonian and two sites! 
 

                        
 

dt
N N = t/dt

8N

Time evolution of quantum systems

48



CT = KroneckerProduct; 
X = PauliMatrix[1]; 
Y = PauliMatrix[2]; 
Z = PauliMatrix[3]; 
CNOT = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}; 
HAD = {{1/\[Sqrt]2, 1/\[Sqrt]2}, {1/\[Sqrt]2, -(1/\[Sqrt]2)}}; 
HY = {{1/\[Sqrt]2, -I/\[Sqrt]2}, {I/\[Sqrt]2, -(1/\[Sqrt]2)}}; 
XXYYv1 = CNOT . CT[HAD, IdentityMatrix[2]] . CNOT . CT[MatrixExp[I (\[Alpha]/
2) Z], MatrixExp[I (-\[Alpha]/2) Z]] . CNOT . CT[HAD, IdentityMatrix[2]] . CNOT // 
FullSimplify; 
XXYYv2 = (CT[HAD, HAD] . CNOT . CT[IdentityMatrix[2], MatrixExp[I (\[Alpha]/
2) Z]] . CNOT . CT[HAD, HAD]) . (CT[HY, HY] . CNOT . CT[IdentityMatrix[2], 
MatrixExp[I (\[Alpha]/2) Z]] . CNOT . CT[HY, HY]) // FullSimplify; 
XXYYv1 == XXYYv2 == MatrixExp[I (KroneckerProduct[X, X] + 
KroneckerProduct[Y, Y]) \[Alpha]/2]

Quick check!
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Basic idea
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QUESTIONS?



• It might seem that the basic idea is straightforward and we can carry on 
with this. However, it is easy to check that if  increases, the 
decomposition in terms of Paulis is not efficient. It scales terribly with . 


• One thing to note about Pauli matrices and strings is that they are 1-
sparse. 


• A matrix is said to be -sparse if it has at most  non-zero entries in any 
given row/column. A 2-sparse matrix looks like: 
 

N
N

d d

Not efficient! 
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• Wide class of Hamiltonians are SRC. It means the matrix is -sparse and 
there exists efficient algorithms such that  = the column number of  

 non-zero in row . For matrix on earlier slide,  and 
 [this tells where the non-zero is]. We also need to know the 

element i.e.,  efficiently i.e., with only . We can define the 
action of two oracles as:  
 
                             
 
                        

d
f(x, j)

jth x f(1,0) = 0
f(1,1) = 2

Hxy 𝒪(poly (n))

Of( j) |x⟩ |0⟩ = |x⟩ | f(x, j)⟩

OH( j) |x⟩ |y⟩ |0⟩ = |x⟩ |y⟩ |Hxy⟩

Sparse-row-computable (SRC) 
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• We do not want to do:  but would rather like to do 

  where each  is 1-sparse. Note that 1-sparse matrices are 

broader class. Every  is 1-sparse, but not every 1-sparse can be 
written in terms of Pauli matrices.  


• Side note: There are two ways to deal with the unitary operator. One is 
Lie-Suzuki-Trotter product formula which splits into product of unitary or 
we can use Taylor series and truncate it, and use oracles to simulate the 
time evolution. We won’t discuss the latter and will only briefly discthe 
Trotter method. 

H = ∑
j

ajPj

H =
N

∑
j=1

Hj Hj

Pj

Efficient decomposition 
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Lie - Product formula:
et(A

+B)
- (2et-

or more woeful form:

e-
it(A+B)

=e-itAz-itB + O(t). In general

for pth order,theerror grows like oltP*).

Generally, m
- i5Hjt_e-iHst+o(m2t2)2j =1

j =1 for t<1.

What happens if t4I??
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For that, splitinto"r"steps. Lloyd'96

e-it =(πe
yr

+o(mI S
If we wantto bound the error by ti.e

r
- inijtyr

uits- (He I ↓
G

↳> spectral norm
↳ Schalten 8-norm

we require r -m2tYs
no

2 order formula -> 0 (mt
↳
r- its
e
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Taylor Series:
U(t) =e

- iHt-
k!

Truncate to "P"terms i.e.

[(t) =2
t error.so

↳ Berry,Childe, Here,
Kothari, Somma

1312.1414



QUESTIONS?
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The career of a young theoretical physicist consists of treating the harmonic 
oscillator in ever-increasing levels of abstraction. 


- Quote by Sidney Coleman
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• Can represent qubits and qudits effectively since the Hilbert 
space is “theoretically” infinite-dimensional. It has been shown to 
be useful for constructing error-correcting codes. There are 
different prescriptions to encode a qubit in an oscillator. 


• One such method is to represent qubits as single photon, this is 
sometimes useful since practically all the required components 
(for a single photon quantum computer) are already available. In 
addition, noise is a well-understood problem in quantum optics. 
This is known as `dual-rail’ representation. 
 
 
 . |0⟩L := |01⟩ |1⟩L := |10⟩

Encode information in QHO/photons

Alternate approach
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• But for the moment let’s focus on the infinite-dimensional bosonic operators. 
There are now simulators for qumodes (photonic simulator) like Bosonic 
QISKIT, Strawberry Fields etc. 

CV vs. Qubit 
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Bosons/Fermions
Canonical mode operators:", asatisfying
(a,at] =I. One crucialthingto mate

isthat for single fermionic mode, the

analogous relationis 9a, at3 =1.

Eact+ata =1
also

a=atat =0

Therefore, using i =ata, we harr;
aat = 1 - n

=>i(1 - n) =(ata)(aat)
- 0 since an =0

n =0 or 1. Pauli Exclusion
-> principle

Nottrue for borons. 2-dimensional

How to see this?? Take trace of[a,at
=11 an

both sides.

i =F(a +at)

i =( -+)a



CV states 
CoherentStates:Statesoflight(photon)
whose expectationvalue coresponds to
classical EM wave.

1x =e
=kP2 (n>
!

X is the displacement. I i e
id His

z =re

↳Sa. parameter x

1z) -> squeezer state



arXiv: 1804.3159



• For fermionic systems, like Ising model, the qubit approach is generally 
preferred but for models with bosonic degrees of freedom (where the local 
Hilbert space dimension is infinite), the more natural setting is one of oscillator 
(qumodes). Suppose, we consider the famous Bose-Hubbard model where the 

 is given by: 
                         
                                      
  
where we have used create /annihilation operators and the number operators. 
The first term denotes the hopping of bosons between neighbouring sites and 
second term is the on-site potential term.  
 
                                              
 
 
 
 
 
 
 
 

H

H = J∑⟨ij⟩ a†
i aj + 1

2 U∑i ̂ni( ̂ni − 1)

Bose Hubbard Model with CVs 
(arXiv:1801.06565) 
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Two-site model

• We can write the time-evolution operator as: 
 
 

 ; 

   
 
where BS is the beam-splitter gate, K is the Kerr gate (non-Gaussian), and R is the rotation gate. These 
gates are qumodes equivalent of the qubit gates we saw before. For example, 
Constructing these gates are major undertaking in quantum photonics labs where the photon is 
modelled as an oscillator.             

eiHt = [BS (θ, ϕ) (K(r)R(−r) ⊗ K(r)R(−r))]
N

+ 𝒪 (t2/N)
θ = − Jt/N, ϕ = π /2, r = − Ut/2N

K(κ) = exp(iκ ̂n2) .

66

H =5(a,z +aa) +1(,-, +2
- i)

- 2
-

hopping on-site

Use lie-Productformula:
N

2
A +B

= (e*re)
we can write

1, K2 R1, R2
Krz M

Ie-iitt_jeifataztata, itthe
BS12

+0(t4)



• Two steps of evolution can be achieved by the following circuit. 
 
 

              


• Let’s try it out using Xanadu’s Strawberry Fields photonics 
simulator. 

Time evolution 
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• In the example we just considered, we had one set of creation and annihilation 
operator i.e.,  at each lattice site. The subscript labelled the site they 
belonged to. 


• But we can have more than one QHO at each site. Consider that there are two 
sets of Bose operators at each site. Let us denote them by  respectively. In 
this case, we then have . It turns out that we can define 
operators such as  

, ,  and some of the interesting physical 
Hamiltonians can be written these operators. These operators form 
representation theory of  algebra.  These might provide better ways to 
approach quantum computing of models with bosonic d.o.f and this is also 
equally interesting to pursue. 


• In addition, there are also hybrid based approach which makes use of both 
qubits and continuous variables. 

a, a†

a, b
̂n = a†a + b†b

K+ := a†b† K− := ba K3 :=
1
2

( ̂n + 𝕀)

𝔰𝔲(1,1)

Not just 1!



• We are entering a new era where as quantum computers become more capable, 
we can start solving ‘some’ problems not possible with current computers. 
However, this is not anytime soon. Since, QM is quite restrictive unlike classical 
computing, the progress might not be smooth.


• For now, VQE+variants is sort of state-of-the-art. This will improve in coming 
decade with more qubits (with error-correction) and better algorithms. 

Conclusions
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