

Toward Digital Quantum Simulations of Standard Model Physics - a look from my path

Martin Savage InQubator for Quantum Simulation University of Washington

June 30, 2023

Image: Bauer, Davoudi, KIco, Savage: Nature Review

Particles & Interactions

Simulation

Image: Bauer, Davoudi, Klco, Savage

Phases & Dynamics of Matter

Simulation Objectives for the Standard Model and Beyond **Gauge Theories and Descendent Effective Field Theories and Models**

Real-time dynamics particle production, fragmentation vacuum and in medium

Low-energy reactions

Electroweak processes (e.g., nu-A)

Neutrino dynamics

Matter-antimatter asymmetry

Equation of state of dense hot matter and dynamics viscosity, etc

Conquering some "sign problems"

The early universe

Supernova/Neutron stars

Precision structure and interactions of nuclei

Many-body systems

Rare processes, double-beta decay

- symmetries

Real-Time Dynamics and Improved Modeling of Reaction Pathways

J. Phys. Chem. B 2013, 117, 49, 15894-15902

Femto-second chemistry reveals reaction mechanisms Quantum simulations will reveal the reactions pathways of QCD

Physical Systems in Multi-Hilbert Space, Hybrid Devices

Map scalar, fermion and vector systems

Optimize for target observables

Gold-Standard for QFT - Lattice Scalar Field Theory

Jordan, Lee, Preskill

Double exponential convergence of field digitization

- Nyquist-Shannon JLP, FNAL, UW
- QFT and exact conjugate-momentum space operator

X

Could it be done better ? Can entanglement be used more strategically?

Lattice Gauge Field Theories and the Standard Model

Hamiltonian Kogut-Susskind 1970's

Yang-Mills: Byrnes-Yamamoto 2005

SU(N): Zohar et al (2013)

QLM Banerjee et al Tagliacozzo et al (2013)

Yang-Mills Byrnes-Yamamoto – Kogut-Susskind

Many ways to map/distribute the field(s) in the UV (lattice spacing) Consider the Kogut-Susskind basis = electric basis

Magnetic Field operator Off-diagonal on electric basis

> SU(N) Gauge invariant Hilbert space

Truncate in Casimir = dimensionality of irrep

Continuum limit

Dynamics in the Schwinger Model - Abelian Gauge Theory 1+1D QED

Algorithmic resource requirement estimates: Lougovski, Wiebe Stryker, et al.

The Difference 5 Years Makes

2017-8

Natalie Klco et al

2022

Roland Farrell et al

Non-Abelian GFT SU(2) LGT - 1+1, 2+1 D

Muschik, Lewis, et al (2021)

Also see Mari Carmen Banuls, Karl Jansen et al

- Only dynamical gauge fields
- Gauge Variant Completions (GVC)
- Severely truncated in field space
- 2D, but really 1D

Klco, Stryker, MJS (2019), A Rahman et al (2021)

1+1Dimensional SU(3) [QCD]

Building on the works of others, Banuls, Dirac, Jansen, Muschik, Lewis,

Gauge Choice : Axial Gauge Vs Weyl Gauge

Found time-evolution requirements to be approx independent of gauge choice

Simulations using IBM's Quantum Computers 1-site, 3 colors, 1 flavor

IBM 7 qubit Perth and Jakarta

34 CNOTs per step447 Pauli-Twirled circuits1000 shots per circuits

Dynamic Decoupling Pauli-Twirling Post selection

De-coherence renormalization (Bauer et al, Lewis et al)

Number of CNOT gates for one Trotter step of $SU(3)$			
L	$N_f = 1$	$N_f = 2$	$N_f = 3$
1	30	114	242
2	228	878	$1,\!940$
5	1,926	$7,\!586$	$16,\!970$
10	$8,\!436$	$33,\!486$	$75,\!140$
100	912,216	$3,\!646,\!086$	$8,\!201,\!600$
	Nu L 1 2 5 10 100	Number of CNOT g L $N_f = 1$ 1 30 2 228 5 1,926 10 8,436 100 912,216	Number of CNOT gates for one Trotte L $N_f = 1$ $N_f = 2$ 130114222887851,9267,586108,43633,486100912,2163,646,086

Entanglement structures

Entanglement in SM physics: Extensive literature that is rapidly growing.

Peak in entanglement coincides with transition from quark-antiquark to baryon-anti-baryon structure

Recovering Real-time Exponential-Decay Weak Interactions

Decoherence Renormalization The Difference 1 Year Can Make!

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer

Sarmed <u>A Rahman</u>, Randy <u>Lewis</u>, Emanuele <u>Mendicelli</u>, and Sarah <u>Powell</u> Department of Physics and Astronomy, York University, Toronto, Ontario, Canada, M3J 1P3

(Dated: May 2022. Updated: October 2022.)

FIG. 3. Time evolution by self-mitigation on a two-plaquette lattice from the initial state of Fig. 1 with gauge coupling x = 2.0 and time step dt = 0.08. In both panels, the red solid (blue dashed) curve is the exact probability of the left (right) plaquette being measured to have $j = \frac{1}{2}$. Upper panel: The red left-pointing (blue right-pointing) triangles are the physics data computed from the ibm_lagos quantum processor. The red (blue) error bars without symbols are the mitigation data computed on ibm_lagos from the same circuit but with half the steps forward in time and then half backward in time. Lower panel: The triangles are the physics results obtained by applying Eq. (8) to the data from the upper panel.

State Preparation with Localizable or Physics-Aware Quantum Circuits

Correlation length allows for fixed-point angles to be determined exponentially well with small-scale simulations

Systematically Localizable Operators for Quantum Simulations of Quantum Field Theories

Natalie Klco^{*} and Martin J. Savage^{\dagger}

A Conjecture

We are likely missing an important ingredient so far: at the scale of the (unphysical) lattice spacing

Conjecture: efficient digital quantum circuits exist for dominantly focused at the scale of the physics/observable(s). *i.e., EFTs can manifest at the quantum circuit level.*

- all of the "power" of computation the gates are being applied
- Standard Model simulations where the gate-structure, or power, is

Asymptotically-Free Quantum Field Theory - Lattice Control

For Cold-Atom Systems Dimensional Reduction

[Submitted on 14 Nov 2022 (v1), last revised 22 Nov 2022 (this version, v2)]

Preparation for Quantum Simulation of the 1+1D O(3) Non-linear σ -Model using Cold Atoms

Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, Martin J. Savage

APS/Alan Stonebraker

2+1D

Caspar+Singh (2022)

Fragmentation and Collisions Vacuum and In-Medium

$\mathcal{L} = \bar{f}_1(i\partial \!\!\!/ + m_1)f_1 + \bar{f}_2(i\partial \!\!\!/ + m_2)f_2 + (\partial_\mu \phi)^2$ + $g_1 \bar{f}_1 f_1 \phi$ + $g_2 \bar{f}_2 f_2 \phi$ + $g_{12} \left[\bar{f}_1 f_2 + \bar{f}_2 f_1 \right] \phi$. Fragmentation

A quantum algorithm for high energy physics simulations

Christian W. Bauer, Wibe A. de Jong, Benjamin Nachman, Davide Provasoli, arXiv:1904.03196 [hep-ph]

Simulating Collider Physics on Quantum Computers using **Effective Field Theories**

Christian W. Bauer, Benjamin Nachman, Marat Freytsis, arXiv:2102.05044 [hep-ph]

QQbar moving in medium

Quantum simulation of non-equilibrium dynamics and thermalization in the Schwinger model, Wibe A. de Jong, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer et al. e-Print: 2106.08394 [quant-ph]

Preserving Gauge Invariance

Stabilizing Gauge Theories in Quantum Simulators: A Brief Review

Invited Contribution to Proceedings of the Quantum Simulation for Strong Interactions (QuaSi) Workshops 2021 [1] at the InQubator for Quantum Simulation (IQuS)

Jad C. Halimeh^{1,2,*} and Philipp Hauke^{3,4,†}

Scar States in Gauge Theories and Delayed Thermalization

March 2022

Scar States in Deconfined \mathbb{Z}_2 Lattice Gauge Theories

Adith Sai Aramthottil,¹ Utso Bhattacharya,² Daniel González-Cuadra,^{2,3,4} Maciej Lewenstein,^{2,5} Luca Barbiero,^{6,2} and Jakub Zakrzewski^{1,7}

FIG. 4. The half-chain entanglement entropy (\mathcal{S}) of all the eigenstates at t = 0.2, h = 0.5 for L = 16. The orange dashed line gives the S_{RMT} value. Circles denote different QMBS obtained via our tracking procedure. Green circles denote antimagnon-like family S_n^2 for n = 0, 2, 4, 6, 8 while red circles magnon-like states, S_n^1 with n = 0, .., 6 counting from the right hand side. Inset: The half-chain Entanglement Entropy divided by system size $\left(\frac{S}{L}\right)$ for S_2^2 state showing its sub-volume property as expected for QMBS.

 Anomalously-low bi-partite entanglement • Distributed throughout spectrum Weakly connected to evolution Hamiltonian (cold sub-space) Delay thermalization

$$H = -t \sum_{j} \left(c_{j}^{\dagger} - c_{j} \right) \sigma_{j+1/2}^{z} \left(c_{j+1}^{\dagger} + c_{j+1} \right)$$
$$-\mu \sum_{j} \left(c_{j}^{\dagger} c_{j} - \frac{1}{2} \right) - h \sum_{j} \sigma_{j+1/2}^{x}.$$

Previously: only confining systems exhibited scars Shown to exist in de-confined regime • Shown not to exist in confining regime

Neutron Scattering with Hybrid Quantum Simulation

LLNL+Trento

Hybrid Analogue-Digital using Trapped lons

Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach

Zohreh Davoudi,^{1,*} Norbert M. Linke,² and Guido Pagano³

 ¹ Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742, USA.
 ² Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742
 ³ Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA. (Dated: April 20, 2021)

Examples of Co-Designing for Standard Model Physics N-body Gates in Trapped Ion Systems

Engineering an Effective Three-spin Hamiltonian in Trapped-ion Systems for Applications in Quantum Simulation

Bárbara Andrade,¹ Zohreh Davoudi,² Tobias Graß,¹ Mohammad Hafezi,^{3,4} Guido Pagano,⁵ and Alireza Seif^{6,*}

N-body interactions between trapped ion qubits via spin-dependent squeezing

Or Katz,^{1,2,3},^{*} Marko Cetina,^{1,3} and Christopher Monroe^{1,2,3,4}

FIG. 1. (a,b) Traditional Mølmer-Sørensen scheme based on a pair of bichromatic laser beatnotes off-resonantly driving firstorder spin-phonon couplings with symmetric detuning $(\pm \delta)$, giving rise to an effective spin-spin interaction. The two-ion case is shown for simplicity. (c,d) Generalized Mølmer-Sørensen scheme to generate an effective three-spin coupling. A second-order blue sideband is driven with twice the detuning (2δ) as the first-order red $(-\delta)$ sideband. As shown in (c), this process creates two virtual phonons with a second-order process and annihilates the same number of phonons through two first-order processes Note that only two out of several possibilities are depicted. In all subfigures, Ω_r and Ω_b are the Rabi frequencies of the red and blue beatnotes, respectively. ω_0 is the qubit frequency, and $\omega \equiv \omega_{\rm com}$ is the transverse center-of-mass frequency.

Neutrino Flavor Dynamics in Supernova

$|\Psi\rangle = \alpha |\nu_e\rangle + \beta |\nu_x\rangle$

$$H = H^{(1)} + H^{(2)} = \sum_{i=0}^{N-1} h_i + \sum_{i
$$= \sum_{i=0}^{N-1} \mathbf{b} \cdot \mathbf{\sigma}_i + \sum_{i$$$$

Coherent Neutrino Systems

A number of independent teams are pursuing these systems

Marc Illa

Francesco Turro,^{1,2} Luca Vespucci,^{1,3} and Francesco Pederiva^{1,2}

Coherent Neutrino Systems

 $H = H^{\nu} + H^{\nu\nu} = \sum_{i} \mathbf{b} \cdot \boldsymbol{\sigma}^{(i)} + \frac{1}{N} \sum_{i < j} J_{ij} \boldsymbol{\sigma}^{(i)} \cdot \boldsymbol{\sigma}^{(j)}$ (a)(c) $|\Psi_0\rangle = |\nu_e\rangle^{\otimes N/2} \otimes |\nu_x\rangle^{\otimes N/2}$

Ν	Т	U	Μ
	Ν	С	E
	Т	Е	R

Coherent Neutrino Systems

Our simulations:

Quantinuum's H1-1, H1-1E 20 qubit trapped ion quantum computer and emulator

N=4,6,8,12 neutrinos

Time evolution compute state probabilities correlations n-tangles

N	т	U	M
	Ν	С	E
	Т	Е	R

Multi-Neutrino Entanglement

e.g., $|\Psi\rangle = \frac{1}{\sqrt{3}} [|11110\rangle + |00000\rangle + |10101\rangle]$

 $\tau_N(t) = |\langle \Psi_t | \sigma_y^{\otimes N} | \Psi_t^* \rangle|^2 = |\langle \Psi_0 | e^{itH} \sigma_y^{\otimes N} e^{itH} | \Psi_0 \rangle|^2$

Tractable by tensor-product initial state

Ν	т	U	Μ
	Ν	С	E
	Т	Е	R

Multi-Neutrino Entanglement

Ν	т	U	Μ
	Ν	С	E
	Т	Е	R

Entanglement Rearrangement and Hamiltonian Learning in Nuclei and Spin Systems

Entanglement re-arrangement Variational natural orbitals

Lipkin-Meshkov-Glick Model and **Effective Model Spaces**

 $|\Psi_{\rho\sigma}^{(J)}\rangle$

M = -J

exact solutions:

N particles distributed on two N-fold degenerate levels

$$J_{z} = \frac{1}{2} \sum_{p\sigma} \sigma c_{p\sigma}^{\dagger} c_{p\sigma}$$
$$J_{+} = \sum_{p} \sigma c_{p+}^{\dagger} c_{p-}, \qquad J_{-} = (J_{-})$$

$$\sum_{=-J}^{J} A_{J,M} |J,M\rangle \equiv \sum_{n=0}^{2J} A_n |n\rangle$$

np-nh excitation

Effective Model Spaces

 $\hat{H}, |\Psi_{ex}\rangle$ $E(\Lambda)_{proj}, |\Psi\rangle_{proj}^{(\Lambda)}$ full Hilbert space

Effective Model Spaces HL-VQE

★*Hamiltonian-Learning-VQE:*

Cost function to minimize:

 \Rightarrow learns the effective Hamiltonian and identifies the associated ground state simultaneously

$$\overline{\sigma} = \{\hat{I}, \hat{X}, \hat{Y}, \hat{Z}\}$$

 $E(\beta, \boldsymbol{\theta}) = \langle \Psi(\boldsymbol{\theta}) | \hat{H}(\beta) | \Psi(\boldsymbol{\theta}) \rangle$

 $= \sum_{i_1,..,i_{n_q}} h_{i_i,..,i_{n_q}}(\beta) \left\langle \Psi(\boldsymbol{\theta}) | \overline{\sigma}_{i_1} \otimes ... \otimes \overline{\sigma}_{i_{n_q}} | \Psi(\boldsymbol{\theta}) \right\rangle$

Measurement of cost function and derivatives

$$E(\beta^{(k)}, \boldsymbol{\theta}^{(k)})$$

$$\frac{\partial E(\beta^{(k)}, \boldsymbol{\theta}^{(k)})}{\partial \theta_i^{(k)}}$$

$$\frac{\partial E(\beta^{(k)}, \boldsymbol{\theta}^{(k)})}{\partial \beta^{(k)}}$$

Connections to AI/ML (Elizabeth Bennewitz)

Effective Model Spaces Convergence in Truncation

Effective Model Spaces Results from IBM's Simulators and Quantum Computers

$$N = 30, \ \bar{v} = \frac{V(N-1)}{\varepsilon} = 2.0, \ \varepsilon = 1$$

Lipkin-Meshkov-Glick Model with Pairing

Quantum Simulations of SO(5) Many-Fermion Systems using Qudits

Marc Illa⁰,^{1,*} Caroline E. P. Robin⁰,^{2,3,†} and Martin J. Savage^{1,‡}

Basis that naturally embeds in a qu5it but also a physics-aware JW mapping

Trotter errors magnified in coherently sur over many states with small amplitudes

Lipkin-Meshkov-Glick Model with Pairing

Quantum Simulations of SO(5) Many-Fermion Systems using Qudits

Marc Illa⁰,^{1,*} Caroline E. P. Robin⁰,^{2,3,†} and Martin J. Savage^{1,‡}

Lipkin-Meshkov-Glick Model Generalized

Multi-Body Entanglement and Information Rearrangement in **Nuclear Many-Body Systems**

S. Momme Hengstenberg^{1a}, Caroline E. P. Robin^{1,2} ^b, and Martin J. Savage^{3c}

 $\hat{H} = \varepsilon \hat{J}_z - V_x (\hat{J}_x^2 + \chi \hat{J}_y^2) + V_x \frac{1+\chi}{\Lambda} \hat{N}$

	_
1	-
	_
Exact —	
(Λ=3) —	
cated —	-
	-
	-
	-
	-
	-
	-
1	-
mation	-
	-
	-
	-
4.5	5

Lipkin-Meshkov-Glick Model Generalized

Multi-Body Entanglement and Information Rearrangement in Nuclear Many-Body Systems

S. Momme Hengstenberg^{1a}, Caroline E. P. Robin^{1,2} ^b, and Martin J. Savage^{3c}

It is starting to become clear that:

techniques from nuclear many-body methods, mean-field methods, building in correlations, renormalization group, effective model spaces and effective field theories

likely to be able to advance lattice gauge theory Hamiltonian calculations and dynamics in dense neutrino systems for quantum simulation

. . . .

and maybe vice versa

Possibly

- Standard Model dynamics requires quantum simulations
- Early stages in assessing requirements. Significant obstacles remain.
- Encouraging progress in quantum simulations in low-dimensional systems.
- Efforts toward 2+1 and 3+1 simulations.
- Connections within Nuclear Physics are emerging

Effective Model Spaces (Simple) Quantum Circuits for State Preparation

*1 qubit ($\Lambda = 2$):

 $|\Psi(\theta)\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

*2 qubits ($\Lambda = 4$):

 $|\Psi(\theta_0, \theta_1, \theta_2)\rangle$

 $R_{\rm ZX}(\theta) = e^{-i\frac{\theta}{2}\hat{X}\otimes\hat{Z}}$