

I. Quantum devices

 $=2^n \langle P(x) \rangle_i -1$ \mathcal{F}_{XEB}

 $\mathcal{F}_{\mathsf{XEB}}$ =1

 $\mathcal{F}_{XEB} = 0$ $\mathcal{F}_{\mathsf{XEB}}$

2. Hands-on: Noise models

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Outline

I. Quantum devices

		$=2^n\langle P(x)\rangle_i-1$)	
		\mathcal{F}_{XEB}			
	$\mathcal{F}_{XEB} = 1$		$\mathcal{F}_{XEB} = 0$	\mathcal{F}_{XEB}	
		\mathcal{F}_{XEB}		\mathcal{F}_{XEB}	

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Outline

DiVincenzo Criteria

A quantum computer must satisfy the following:

- Scalable physical system with well-defined qubits Ability to initialize qubits Ability to measure qubits
- Universal set of quantum gates Qubit decoherence times much longer than gate latency

A variety of different physical systems are being explored, each with strengths

- Superconducting circuits
- Trapped ions
- Rydberg atoms

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

- Photonics
- Topological materials
- . . .

Superconducting circuits

Rapid advances in qubit coherence times and quantum gates

State-of-the-art: $\mathcal{O}(10 - 100)$ qubits, $\mathcal{O}(100)$ two-qubit operations

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Quantum devices

Example: Bit flip code

 \Box Suppose a bit flip (X gate) occurs with probability p

Quantum Computing Bootcamp for HEP/NP, JLab

Quantum error correction

Devitt, Munro, Nemoto (2013)

Example: Bit flip code

- \Box Suppose a bit flip (X gate) occurs with probability p
- □ Encode our qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ into three qubits: $|\psi_{\text{encoded}}\rangle = \alpha |000\rangle + \beta |111\rangle$

Quantum error correction

Devitt, Munro, Nemoto (2013)

Example: Bit flip code

- \Box Suppose a bit flip (X gate) occurs with probability p
- □ Encode our qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ into three qubits: $|\psi_{\text{encoded}}\rangle = \alpha |000\rangle + \beta |111\rangle$
- Introduce ancilla qubits to measure the parity of the three qubits

Quantum error correction

Devitt, Munro, Nemoto (2013)

Example: Bit flip code

- \Box Suppose a bit flip (X gate) occurs with probability p
- □ Encode our qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ into three qubits: $|\psi_{\text{encoded}}\rangle = \alpha |000\rangle + \beta |111\rangle$

— □ Perform correction	Error Location	Final State,
	No Error	$ \alpha 000 angle 00 angle$
	Qubit 1	$ \alpha 100 \rangle 11 \rangle$
	$Qubit \ 2$	$ \alpha 010 \rangle 10 \rangle$
	Qubit 3	$ \alpha 001 \rangle 01 \rangle$
		, . ,

Quantum error correction

There are a variety of error correction codes:

- □ Shor code
- □ Steane code
- Surface codes
- Δ...

correct errors faster than you introduce them

Quantum error correction

- Quantum threshold theorem: If errors are below a certain threshold, then you can
 - Demonstrating "break-even" point is active goal of research

Few qubits

Current devices are limited to O(10) - O(100) qubits

Need more qubits to achieve quantum advantage

Decoherence

The quantum state of a qubit is stable only for a limited time

 T_2 : dephasing time

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Current quantum devices

 $T_1: \text{decay time } |1\rangle \rightarrow |0\rangle$

 $|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Need longer coherence times to increase the "gate depth" of circuits

Gate noise

Single- and two-qubit gate operations are imperfect

$$U_{\text{faulty}} = A U_{\text{ideal}}$$

Need smaller gate noise to perform quantum error correction

2. Hands-on: Noise models

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Outline

James Mulligan

Quantum Computing Bootcamp for HEP/NP, JLab

Hands-on: Noise models

https://colab.research.google.com/drive/ISv9ZTftGAtzFsyIMQV_g0CZhWesGRbmO?usp=share_link

"Copy to Drive" —> Then you can edit and save your own copy

