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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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A quantum computer must satisfy the following:

Scalable physical system with well-defined qubits
Ability to initialize qubits
Ability to measure qubits
Universal set of quantum gates
Qubit decoherence times much longer than gate latency

A variety of different physical systems are being explored, each with strengths

Superconducting circuits
Trapped ions
Rydberg atoms

Photonics
Topological materials
…
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Quantum devices
Superconducting circuits Trapped ions

Rapid advances in qubit coherence times and quantum gates
State-of-the-art:  qubits,  two-qubit operations! (10 − 100) ! (100)

Qubit control: overview

qubit

Zlatko Minev — Qiskit Global Summer School 2020   (37)
Qubits: Nonlinear quantum oscillator
Gates: Coupled microwave pulses

The Transmon qubit: restricting Hilbert space

En
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Φ/!0
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Restrict to qubit subspace of |0> and |1>

Zlatko Minev — Qiskit Global Summer School 2020   (27)

A first approximation

Magnetic flux

Energy

Harmonic oscillator

Zlatko Minev — Qiskit Global Summer School 2020   (7/104)

Qubits: Atomic energy levels (optical/hyperfine)
Gates: Coupled laser pulses
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

X
p

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
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sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
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= |000i , |1i
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such that an arbitrary single qubit state | i = ↵ |0i+� |1i
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i
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$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code 8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
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and |1i
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are defined as,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
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TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
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, hence if we assume | i = |0i
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, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this
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fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i
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= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong
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It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

X
p

|ψ⟩ = α |0⟩ + β |1⟩
|ψencoded⟩ = α |000⟩ + β |111⟩
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code 8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction
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FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

Introduce ancilla qubits to measure the parity 
of the three qubits

X
p

|ψ⟩ = α |0⟩ + β |1⟩
|ψencoded⟩ = α |000⟩ + β |111⟩
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Idea: Encode one logical qubit in a larger set of physical qubits

Example: Bit flip code

Suppose a bit flip (  gate) occurs with 
probability 

Encode our qubit  into 
three qubits: 

Introduce ancilla qubits to measure the parity 
of the three qubits

Perform correction

X
p

|ψ⟩ = α |0⟩ + β |1⟩
|ψencoded⟩ = α |000⟩ + β |111⟩

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
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.
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Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

8

It should be emphasized that the 3-qubit code does not
represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0i

L
and |1i

L
are defined as,

|0i
L
= |000i , |1i

L
= |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0i
L
+ � |1i

L

= ↵ |000i+ � |111i

= | i
L
.

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0iL state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | iL.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0i

L
$ |1i

L
, hence if we assume | i = |0i

L
, a single bit

flip on any qubit leaves the final state closer to |0i
L
than

|1i
L
. The distance between two codeword states, d, de-

fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�x-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �x gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �x correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

Devitt, Munro, Nemoto (2013)
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Quantum error correction
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Idea: Encode one logical qubit in a larger set of physical qubits

Quantum threshold theorem: If errors are below a certain threshold, then you can 
correct errors faster than you introduce them

There are a variety of error correction codes:
Shor code
Steane code
Surface codes
…

Demonstrating “break-even” point is active goal of research
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Current quantum devices
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Decoherence Gate noiseFew qubits
The quantum state of a qubit is 
stable only for a limited timeCurrent devices are limited to 

 qubits!(10) − !(100)

Need more qubits to achieve 
quantum advantage

Single- and two-qubit gate 
operations are imperfect

Need longer coherence times to 
increase the “gate depth” of circuits

Need smaller gate noise to 
perform quantum error correction

: decay time T1 |1⟩ → |0⟩
Ufaulty = A Uideal

ρ → (1 − λ)ρ + λI

: dephasing timeT2

|1⟩ → 1
2

( |0⟩ + |1⟩)
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Outline

1. Quantum devices

2. Hands-on: Noise models

b

10 mm
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https://colab.research.google.com/drive/1Sv9ZTftGAtzFsy1MQV_g0CZhWesGRbmO?usp=share_link

“Copy to Drive” —> Then you can edit and save your own copy

Hands-on: Noise models


