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Recap

4

Quantum bit (qubit): |ψ⟩ = a0 |0⟩ + a1 |1⟩ = (a0
a1)

When we measure the state , we obtain either:
State , with a probability 
State , with a probability 

|ψ⟩
|0⟩ |a0 |2

|1⟩ |a1 |2

For  qubits, there are  amplitudesN 2N

e.g. |ψ⟩ = a1 |000⟩ + a2 |001⟩ + a3 |010⟩ + a4 |011⟩ + a5 |100⟩ + a6 |101⟩ + a7 |110⟩ + a8 |111⟩

A quantum operation modifies all of these  amplitudes simultaneously!2N

|a⟩ =
2N

∑
i=1

ai |ψi⟩ → |b⟩ =
2N

∑
i=1

bi |ψi⟩
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Quantum circuits
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Nothing more than (clever) unitary matrix multiplications!

Quantum computation 23

in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X , as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

|a⟩

|a⟩|b⟩

|b⟩
Example: SWAP circuit
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00〉, |01〉, |10〉, and |11〉, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, B〉 → |A, B ⊕A〉, where ⊕ is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00〉, and similarly for the
other computational basis states, |01〉, |10〉, and |11〉. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A⊕B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of

where

Quantum computation 23

in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0〉s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, b〉,

|a, b〉 −→ |a, a ⊕ b〉
−→ |a ⊕ (a ⊕ b), a ⊕ b〉 = |b, a ⊕ b〉
−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉 , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
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illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
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CNOT gate

SWAP ( |a⟩ ⊗ |b⟩) = CNOT0,1 × CNOT1,0 × CNOT0,1 × (a0
a1) ⊗ (b0

b1)

=
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

a0b0
a0b1
a1b0
a1b1

=

b0a0
b0a1
b1a0
b1a1

= |b⟩ ⊗ |a⟩
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Where does quantum advantage come from?

6

However: we cannot access the quantum amplitudes  directly!{ai}

This is the major challenge: How can we take advantage of the exponential efficiency of 
quantum operations when we only access one randomly sampled state at a time?

A quantum operation modifies  amplitudes simultaneously2N

|a⟩ =
2N

∑
i=1

ai |ψi⟩ → |b⟩ =
2N

∑
i=1

bi |ψi⟩
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QC can solve some classically hard problems

P

BQP

NP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

BQP: Polynomial-time solution on quantum computer

t

N

Classical: exponential

Quantum: polynomial
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QC can solve some classically hard problems

P

BQP

NP

P: Polynomial-time solution on classical computer 

NP:  Polynomial-time verification on classical computer 

BQP: Polynomial-time solution on quantum computer

Scattering in scalar field theory

QCD?

Jordan, Lee, Preskill (2012-2018)

Dynamics of many-body non-relativistic 
quantum system Feynman (1982), 

Lloyd (1996)

Preskill (2018), Klco, Savage (2018), 
Muschik et al. (2016), Davoudi et al. (2019), …
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Based on Scott Aaronson

NISQ

Speedup

Interesting

Boson sampling
Random circuit sampling
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Quantum advantage

53-qubit superconducting circuit device

Algorithm: sampling of random circuits

 times faster than best classical 
supercomputers
% (103)

Martinis et al., Nature (2019)

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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The Extended Church-Turing Thesis is a foundational tenet 
in computer science, which states that a probabilistic Turing 
machine can efficiently simulate any process on a realistic 
physical device (1). In the 1980s, Richard Feynman observed 
that many-body quantum problems seemed difficult for 
classical computers due to the exponentially growing size of 
the quantum state Hilbert space. He proposed that a quan-
tum computer would be a natural solution. 

A number of quantum algorithms have since been de-
vised to efficiently solve problems believed to be classically 
hard, such as Shor’s factoring algorithm (2). Building a 
fault-tolerant quantum computer to run Shor’s algorithm, 
however, still requires long-term efforts. Quantum sampling 
algorithms (3–6), based on plausible computational com-
plexity arguments, were proposed for near-term demonstra-
tions of quantum computational speedup in solving certain 
well-defined tasks compared to current supercomputers. If 
the speedup appears overwhelming such that no classical 
computer can perform the same task in a reasonable 
amount of time and is unlikely overturned by classical algo-
rithmic or hardware improvements, it was called quantum 
computational advantage or quantum supremacy (7, 8). 
Here, we use the first term. 

A very recent experiment on a 53-qubit processor has 
generated a million noisy (~0.2% fidelity) samples in 200 s 
(8), while a supercomputer would take 10,000 years. It was 
soon argued that the classical algorithm can be improved to 
cost only a few days to compute all the 253 quantum proba-
bility amplitudes and generate ideal samples (9). Thus, if the 
competition were to generate a much larger size of samples, 
for example, ~1010, the quantum advantage would be re-
versed provided with sufficient storage. This sample-size-
dependence of the comparison—an analog to loopholes in 
Bell tests (10)—suggests that quantum advantage would re-
quire long-term competitions between faster classical simu-
lations and improved quantum devices. 

Boson sampling, proposed by Aaronson and Arkhipov 
(5), was the first feasible protocol for quantum computa-
tional advantage. In boson sampling and its variants (11, 12), 
non-classical light is injected into a linear optical network, 
and in the output highly random, photon-number- and 
path-entangled state is measured by single-photon detec-
tors. The dimension of the entangled state grows exponen-
tially with both the number of photons and the modes, 
which fast renders the storage of the quantum probability 
amplitudes impossible. The state-of-the-art classical simula-

Quantum computational advantage using photons 
Han-Sen Zhong1,2*, Hui Wang1,2*, Yu-Hao Deng1,2*, Ming-Cheng Chen1,2*, Li-Chao Peng1,2,                       
Yi-Han Luo1,2, Jian Qin1,2, Dian Wu1,2, Xing Ding1,2, Yi Hu1,2, Peng Hu3, Xiao-Yan Yang3,                       
Wei-Jun Zhang3, Hao Li3, Yuxuan Li4, Xiao Jiang1,2, Lin Gan4, Guangwen Yang4, Lixing You3,        
Zhen Wang3, Li Li1,2, Nai-Le Liu1,2, Chao-Yang Lu1,2, Jian-Wei Pan1,2† 
1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 
230026, China. 2CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology 
of China, Shanghai 201315, China. 3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, 
Chinese Academy of Sciences, Shanghai 200050, China. 4Department of Computer Science and Technology and Beijing National Research Center for Information 
Science and Technology, Tsinghua University, Beijing 100084, China. 

*These authors contributed equally to this work. 

†Corresponding author. Email: pan@ustc.edu.cn 

Quantum computers promises to perform certain tasks that are believed to be intractable to classical 
computers. Boson sampling is such a task and is considered as a strong candidate to demonstrate the 
quantum computational advantage. We perform Gaussian boson sampling by sending 50 indistinguishable 
single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and 
random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-
efficiency single-photon detectors. The obtained samples are validated against plausible hypotheses 
exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum 
computer generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 
and a sampling rate that is ~1014 faster than using the state-of-the-art simulation strategy and 
supercomputers. 
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Pan et al., Science (2020)

Algorithm: boson sampling

Photonic device — special-purpose

Claim:  times faster than 
best classical supercomputers

% (1014)

2019 2020-2021

See also: Pan et al., PRL (2021)
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Boson sampling
Random circuit sampling

VQE/QAOA Annealing
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Variational Quantum Eigensolver

14

Quantum
computer

Classical
computer

Hybrid quantum-classical algorithm

Initialize the trial wavefunction: 
|ψtrial⟩ = U(θ) |0⋯0⟩

Measure the energy:
Etrial = ⟨ψtrial |H |ψtrial⟩

Choose parameters 
in a quantum circuit 

θtrial
U(θ)

U(θ)⋮ ⋮
0
0

0
0

|ψtrial⟩

E
Use the variational principle to estimate ground state energy:

Etrial = ⟨ψtrial |H |ψtrial⟩ ≥ E0
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Variational Quantum Eigensolver

15

Quantum
computer

Classical
computer

Hybrid quantum-classical algorithm

Initialize the trial wavefunction: 
|ψtrial⟩ = U(θ) |0⋯0⟩

Measure the energy:
Etrial = ⟨ψtrial |H |ψtrial⟩

Choose parameters 
in a quantum circuit 

θtrial
U(θ)

E
Use the variational principle to estimate ground state energy:

Etrial = ⟨ψtrial |H |ψtrial⟩ ≥ E0

Compare  to Etrial Emin

Classical optimizer 
(e.g. SPSA)
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Based on Scott Aaronson

NISQ

Speedup

Interesting

Boson sampling
Random circuit sampling

VQE/QAOA Annealing
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Based on Scott Aaronson

NISQ

Speedup

Interesting

Boson sampling
Random circuit sampling

VQE/QAOA

Shor’s factoring 
Grover search
Simulation

Annealing
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Future applications of quantum computers
Simulation of quantum field theory

Cryptography
Molecular dynamics

…

Quantum machine learning

Introduction Equation of state Color screening Summary

QCD on a lattice✏

�

�

�

SQCD[U, Â̄, Â] = a
4

ÿ

x

Nfÿ

f =1

Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ

x

ÿ

µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25

Dense nuclear matter
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Quantum algorithms

19

Shor’s factoring algorithm Grover’s search algorithm

Exponential speedup compared 
to classical algorithms

Polynomial speedup compared 
to classical algorithms

Task: Find prime factors of an integer Task: Find marked entry in an unordered list

% ( (N)) % (N)vs.% ((log N)2 . . . ) % (e1.9(log N)1/3...)vs.

And more…
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Quantum simulation Feynman `81
Lloyd `96 

Task: Given the Hamiltonian of a quantum mechanical system, 
simulate its dynamical evolution

Quantum chemistry, material design, nuclear dynamics, …

H |ψ(t)⟩ = iℏ d
dt

|ψ(t)⟩
That is, solve the time-dependent Schrödinger equation:

The solution is just a unitary evolution!
|ψ(t)⟩ = UH |ψ(0)⟩ UH = e−iHt/ℏwhere

It is exponentially expensive to simulate an -body quantum system on a classical 
computer:   amplitudes! 

Cannot simulate more than  particles

N
2N

%(10 − 100)
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Quantum simulation Feynman `81
Lloyd `96 

A quantum computer can naturally simulate a quantum system 

(1) Initial state preparation

(2) Time evolution

(3) Measurement

|ψ(t)⟩

|0⋯0⟩ → |ψ(0)⟩

UH(t)|ψ(0)⟩

Need efficient encoding of  into quantum gates, 
e.g. local interactions

UH
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Based on Scott Aaronson

NISQ

Speedup

Interesting

Boson sampling
Random circuit sampling

VQE/QAOA

Shor’s factoring 
Grover search
Simulation

Annealing
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Based on Scott Aaronson

NISQ

Speedup

Interesting

Boson sampling
Random circuit sampling

VQE/QAOA

Shor’s factoring 
Grover search
Simulation

Annealing

Is there 
anything 
here?
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Outline

1. Quantum advantage

2. QC for HEP/NP

3. Hands-on: Circuit synthesis
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Solving the equations of QCD
 ℒ = − 1

4 Fa
μνFaμν+

6

∑
j=1

qj(iγμDμ−mj)qj

Perturbative QCD Lattice QCD
For , compute scattering 
amplitudes with Feynman diagrams

αs ≪ 1

σ = σ(0) + αsσ(1) + α2
s σ(2) + . . .

For low-density systems, compute static 
quantities with lattice regularization

Introduction Equation of state Color screening Summary

QCD on a lattice✏

�

�

�

SQCD[U, Â̄, Â] = a
4

ÿ

x

Nfÿ

f =1

Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ

x

ÿ

µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25

Hadron spectra
Deconfinement 
transition
Chiral symmetry 
restoration

…but no strong coupling! …but no dynamics!
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Real-time dynamics

What are the dynamics that confine 
quarks and gluons into hadrons?

How does a high-energy quark or 
gluon fragment into a jet?
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Quantum simulation Feynman `81
Lloyd `96 

A quantum computer can naturally simulate a quantum system described by a Hamiltonian H

(1) Initial state preparation

(2) Time evolution

(3) Measurement

|ψ(t)⟩

|0⋯0⟩ → |ψ(0)⟩

UH(t)|ψ(0)⟩

where UH = e−iHt/ℏ
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Simulating quantum field theories

28

Introduction Equation of state Color screening Summary

QCD on a lattice✏

�

�

�

SQCD[U, Â̄, Â] = a
4

ÿ

x

Nfÿ

f =1

Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ

x

ÿ

µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25

There is an extra complication if we want to simulate QCD: 
it is a quantum field theory — the particle number is not fixed

This requires us to simulate fields at all points in 
spacetime: lattice QCD
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Simulating quantum field theories

29

Introduction Equation of state Color screening Summary

QCD on a lattice✏
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SQCD[U, Â̄, Â] = a
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ÿ
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Â̄f (x)
!

/D[U(x)] + mf
"

Âf (x)

≠ a
4

ÿ
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µ<‹

2
g2

0

Re tr
)

1 ≠ Uµ‹(x) + O(a2)
*

Dµ[Uµ(x)]Âf (x) =
Uµ(x)Âf (x + aµ̂) ≠ U

†
µ(x ≠ aµ̂)Âf (x ≠ aµ̂)

2a
+ O(a2)

Uµ(x) = exp[ig0Aµ(x)] gauge link
Uµ‹(x) = Uµ(x)U‹(x + aµ̂)U†

µ(x + a‹̂)U†
‹(x) plaquette

HPC=∆

5 / 25

There is an extra complication if we want to simulate QCD: 
it is a quantum field theory — the particle number is not fixed

This requires us to simulate fields at all points in 
spacetime: lattice QCD

However, traditional Lattice QCD cannot simulate dynamics due to infamous sign problem

∫ eiℒt

t → it

Real time Imaginary time

Integrals of form: 

Quantum computers: directly simulate the Hamiltonian formulation of QCD
Kogut, Susskind `75
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Example 1: Scattering in scalar field theories

30

Henry Lamm

Jordan, Lee, Preskill (2014)

Can be simulated efficiently using quantum computers!
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Example 2: Hadronization

F. Ringer Quantum computing & Real-time dynamics February 02, 2022

The string-breaking mechanism

45

• Model of hadronization

• Real-time evolution               d

Jong, Lee, Mulligan, Ploskon, Ringer, Yao 
- in preparation

see also Magnifico et al., Berges et al.

<latexit sha1_base64="hPmNA3b+JcUXq5VZq+D6crkY+Ow=">AAACDnicbZDLSsNAFIYn9VbrLerSzWARXJWkiLosiuCygr1AE8pkctIOnUzCzKRQQt/BB3Crj+BO3PoKPoGv4bTNQlt/GPj4zzmcM3+Qcqa043xZpbX1jc2t8nZlZ3dv/8A+PGqrJJMUWjThiewGRAFnAlqaaQ7dVAKJAw6dYHQ7q3fGIBVLxKOepODHZCBYxCjRxurbtseJGHDAd56cQ9+uOjVnLrwKbgFVVKjZt7+9MKFZDEJTTpTquU6q/ZxIzSiHacXLFKSEjsgAegYFiUH5+fzyKT4zToijRJonNJ67vydyEis1iQPTGRM9VMu1mflvTZlThhAurdfRtZ8zkWYaBF1sjzKOdYJn2eCQSaCaTwwQKpn5AKZDIgnVJsGKScZdzmEV2vWae1mrP1xUGzdFRmV0gk7ROXLRFWqge9RELUTRGD2jF/RqPVlv1rv1sWgtWcXMMfoj6/MHiROcNA==</latexit>

hEiElectric field

• Will inform studies of 
hadronization at the EIC 

Lee, Mulligan, Ringer, Yao

Real-time picture of string 
breaking mechanismF. Ringer Quantum computing & Real-time dynamics February 02, 2022

Schwinger model & Hadronization

43

<latexit sha1_base64="nY0kxrXp7iQKIEYvdGXqQV9OIms=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYJpPvlil/150CrJMhJBXI0+uWv3kCRVFBpCcfGdAM/sWGGtWWE02mplxqaYDLGQ9p1VGJBTZjNr52iM6cMUKy0K2nRXP09kWFhzERErlNgOzLL3kz8z+umNr4OMyaT1FJJFovilCOr0Ox1NGCaEssnjmCimbsVkRHWmFgXUMmFECy/vEpatWpwWa3dX1TqN3kcRTiBUziHAK6gDnfQgCYQeIRneIU3T3kv3rv3sWgtePnMMfyB9/kDTJCO9A==</latexit>⇠ r

Schwinger `62• QED in 1+1 dimensions

• Model of hadronization & string breaking in QCD e.g. Pythia

• Confining potential       

• Phenomenological applications see e.g. Loshaj, Kharzeev `13

<latexit sha1_base64="Xu501lERNllHJ99jJQKEfxVpH/A="></latexit>

L =  (i /D �m) � 1

4
Fµ⌫Fµ⌫

Schwinger model: QED in 1+1D
Confinement
Chiral symmetry breaking

Long-term goal: QCD hadronization

Magnifico, Dalmonte, Facchi, 
Pascazio, Pepe, Ercolessi (2020)
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Example 3: QC for hot/dense QCD
High density QCD: Lattice QCD can only 
calculate static quantities at low density

calculable

In vacuum: perturbative QCD
No sense of  “time evolution”

In medium: must combine probe evolution 
with hydrodynamic evolution of the QGP

Real-time dynamics of probes evolving 
through the quark-gluon plasma

not calculable: sign problem
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FIG. 1. Low-depth circuits that generate unitary rotations in
Eq. (7) (panel a) and Eq. (8) (panel b). Also shown are the
single-qubit gates of the Pauli X matrix, the rotation Y (✓)
with angle ✓ around the Y axis, and the two-qubit cnot gates.

of a Hamiltonian is to use UCC ansatz in tandem with
the VQE algorithm [12, 15, 21]. We adopt this strat-
egy for the Hamiltonians described by Eqs. (4) and (5).
We define unitary operators entangling two and three or-
bitals,

U(✓) ⌘ e✓(a
†
0a1�a†

1a0) = ei
✓
2 (X0Y1�X1Y0), (7)

U(⌘, ✓) ⌘ e⌘(a
†
0a1�a†

1a0)+✓(a†
0a2�a†

2a0) (8)

⇡ ei
⌘
2 (X0Y1�X1Y0)ei

✓
2 (X0Z1Y2�X2Z1Y0).

In the second line of Eq. (8) we expressed the exponential
of the sum as the product of exponentials and note that
the discarded higher order commutators act trivially on
the initial product state |#""i. We seek an implementa-
tion of these unitary operations in a low-depth quantum
circuit. We note that U(⌘) and U(⌘, ✓) can be simplified
further because a single-qubit rotation about the Y axis
implements the same rotation as Eq. (7) within the two-
dimensional subspace {|#"i , |"#i}. Likewise Eq. (8) can
be simplified by the above argument except the first rota-
tion now lies within the {|#""i , |"#"i} subspace. The sec-
ond rotation, acting within the {|#""i , |""#i} subspace,
must be implemented as a Y -rotation controlled by the
state of qubit 0 in order to leave the |"#"i component un-
modified. The resulting gate decomposition for the UCC
operations are illustrated in Fig. 1.

Quantum computation.—We use the VQE [11]
quantum-classical hybrid algorithm to minimize the
Hamiltonian expectation value for our wavefunction
ansatz. In this approach, the Hamiltonian expectation
value is directly evaluated on a quantum processor with
respect to a variational wavefunction, i.e. the expectation
value of each Pauli term appearing in the Hamiltonian is
measured on the quantum chip. We recall that quantum-
mechanical measurements are stochastic even for an iso-
lated system, and that noise enters through undesired
couplings with the environment. To manage noise, we
took the maximum of 8,192 (10,000) measurements that
were allowed in cloud access for each expectation value on
the QX5 (19Q) quantum device. In contrast, the recent
experiment [13] by the IBM group employed up to 105

measurements and estimated that 106 would be neces-
sary to reach chemical accuracy on the six-qubit realiza-
tion of the BeH2 molecule involving more than a hundred
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FIG. 2. (Color online) Experimentally determined energies
for H2 (top) and expectation values of the Pauli terms that
enter the two-qubit Hamiltonian H2 as determined on the
QX5 (center) and 19Q (bottom) chips. Experimental (theo-
retical) results are denoted by symbols (lines).

Pauli terms. In addition to statistical errors, we address
systematic measurement errors by shifting and re-scaling
experimental expectation values as outlined in the sup-
plemental material of Ref. [13]. The expectation values
returned from the quantum device are then used on a
classical computer to find the optimal rotation angle(s)
that minimize the energy, or the parametric dependence
of the energy on the variational parameters is mapped
for the determination of the minimum [12].

Our results are based on cloud access to the QX5 and
the 19Q chips, which consist of 16 and 19 superconduct-
ing qubits, respectively, with a single qubit connected to
up to three neighbors. This layout is well suited for our
task, because the Hamiltonian (5) only requires up to
two connections for each qubit. We collected extensively
more data on the QX5 device than on the 19Q and only
ran the N = 2 problem on the latter.

Results.—Figure 2 shows hH2i (top panel) and the ex-
pectation values of the four Pauli terms that enter the
Hamiltonian H2 as a function of the variational param-
eter ✓ for the QX5 (center panel) and the 19Q (bot-
tom panel). We see that the measurements are close
to the exact results, particularly in the vicinity of the
variational minimum of the energy. Cloud access, and
its occasional network interruptions, made the direct
minimization of the energy surface via VQE very chal-
lenging. Instead, we determined the minimum energies
EQX5

2 ⇡ �1.80±0.05 MeV and E19Q
2 ⇡ �1.72±0.03 MeV

from fitting a cubic spline close to the respective mini-
mum.
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FIG. 1. Low-depth circuits that generate unitary rotations in
Eq. (7) (panel a) and Eq. (8) (panel b). Also shown are the
single-qubit gates of the Pauli X matrix, the rotation Y (✓)
with angle ✓ around the Y axis, and the two-qubit cnot gates.

of a Hamiltonian is to use UCC ansatz in tandem with
the VQE algorithm [12, 15, 21]. We adopt this strat-
egy for the Hamiltonians described by Eqs. (4) and (5).
We define unitary operators entangling two and three or-
bitals,

U(✓) ⌘ e✓(a
†
0a1�a†

1a0) = ei
✓
2 (X0Y1�X1Y0), (7)

U(⌘, ✓) ⌘ e⌘(a
†
0a1�a†

1a0)+✓(a†
0a2�a†

2a0) (8)

⇡ ei
⌘
2 (X0Y1�X1Y0)ei

✓
2 (X0Z1Y2�X2Z1Y0).

In the second line of Eq. (8) we expressed the exponential
of the sum as the product of exponentials and note that
the discarded higher order commutators act trivially on
the initial product state |#""i. We seek an implementa-
tion of these unitary operations in a low-depth quantum
circuit. We note that U(⌘) and U(⌘, ✓) can be simplified
further because a single-qubit rotation about the Y axis
implements the same rotation as Eq. (7) within the two-
dimensional subspace {|#"i , |"#i}. Likewise Eq. (8) can
be simplified by the above argument except the first rota-
tion now lies within the {|#""i , |"#"i} subspace. The sec-
ond rotation, acting within the {|#""i , |""#i} subspace,
must be implemented as a Y -rotation controlled by the
state of qubit 0 in order to leave the |"#"i component un-
modified. The resulting gate decomposition for the UCC
operations are illustrated in Fig. 1.

Quantum computation.—We use the VQE [11]
quantum-classical hybrid algorithm to minimize the
Hamiltonian expectation value for our wavefunction
ansatz. In this approach, the Hamiltonian expectation
value is directly evaluated on a quantum processor with
respect to a variational wavefunction, i.e. the expectation
value of each Pauli term appearing in the Hamiltonian is
measured on the quantum chip. We recall that quantum-
mechanical measurements are stochastic even for an iso-
lated system, and that noise enters through undesired
couplings with the environment. To manage noise, we
took the maximum of 8,192 (10,000) measurements that
were allowed in cloud access for each expectation value on
the QX5 (19Q) quantum device. In contrast, the recent
experiment [13] by the IBM group employed up to 105

measurements and estimated that 106 would be neces-
sary to reach chemical accuracy on the six-qubit realiza-
tion of the BeH2 molecule involving more than a hundred
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�Ô
�

Z0

Z1

X0X1

Y0Y1

�� ��/2 0 �/2 �
�

�1

0

1

Z0

Z1

X0X1

Y0Y1

QX5

19Q

19QQX5

FIG. 2. (Color online) Experimentally determined energies
for H2 (top) and expectation values of the Pauli terms that
enter the two-qubit Hamiltonian H2 as determined on the
QX5 (center) and 19Q (bottom) chips. Experimental (theo-
retical) results are denoted by symbols (lines).

Pauli terms. In addition to statistical errors, we address
systematic measurement errors by shifting and re-scaling
experimental expectation values as outlined in the sup-
plemental material of Ref. [13]. The expectation values
returned from the quantum device are then used on a
classical computer to find the optimal rotation angle(s)
that minimize the energy, or the parametric dependence
of the energy on the variational parameters is mapped
for the determination of the minimum [12].

Our results are based on cloud access to the QX5 and
the 19Q chips, which consist of 16 and 19 superconduct-
ing qubits, respectively, with a single qubit connected to
up to three neighbors. This layout is well suited for our
task, because the Hamiltonian (5) only requires up to
two connections for each qubit. We collected extensively
more data on the QX5 device than on the 19Q and only
ran the N = 2 problem on the latter.

Results.—Figure 2 shows hH2i (top panel) and the ex-
pectation values of the four Pauli terms that enter the
Hamiltonian H2 as a function of the variational param-
eter ✓ for the QX5 (center panel) and the 19Q (bot-
tom panel). We see that the measurements are close
to the exact results, particularly in the vicinity of the
variational minimum of the energy. Cloud access, and
its occasional network interruptions, made the direct
minimization of the energy surface via VQE very chal-
lenging. Instead, we determined the minimum energies
EQX5

2 ⇡ �1.80±0.05 MeV and E19Q
2 ⇡ �1.72±0.03 MeV

from fitting a cubic spline close to the respective mini-
mum.

Dumitrescu et al., 
PRL120, 210501 (2018)

Hamiltonian obtained from effective field theory

2

Hamiltonian and model space.—Pionless EFT provides
a systematically improvable and model-independent ap-
proach to nuclear interactions in a regime where the mo-
mentum scale Q of the interesting physics is much smaller
than a high-momentum cuto↵ ⇤ [22, 23]. At leading or-
der, this EFT describes the deuteron via a short-ranged
contact interaction in the 3S1 partial wave. We follow
Refs. [24, 25] and use a discrete variable representation
in the harmonic oscillator basis for the Hamiltonian. The
deuteron Hamiltonian is

HN =
N�1X

n,n0=0

hn0
|(T + V )|nia†

n0an. (1)

Here, the operators a†
n and an create and annihilate a

deuteron in the harmonic-oscillator s-wave state |ni. The
matrix elements of the kinetic and potential energy are

hn0
|T |ni =

~!
2


(2n + 3/2)�n

0

n �

p
n(n + 1/2)�n

0+1
n

�

p
(n + 1)(n + 3/2)�n

0�1
n

�
,

hn0
|V |ni = V0�

0
n�n

0

n . (2)

Here, V0 = �5.68658111 MeV, and n, n0 = 0, 1, . . . N �1,
for a basis of dimension N . We set ~! = 7 MeV, and
the potential has an ultraviolet cuto↵ ⇤ ⇡ 152 MeV [26],
which is still well separated from the bound-state mo-
mentum of about Q ⇡ 46 MeV.

Mapping the deuteron onto qubits.—Quantum com-
puters manipulate qubits by operations based on Pauli
matrices (denoted as Xq, Yq, and Zq on qubit q).
The deuteron creation and annihilation operators can
be mapped onto Pauli matrices via the Jordan-Wigner
transformation

a†
n !

1

2

2

4
n�1Y

j=0

�Zj

3

5 (Xn � iYn),

an !
1

2

2

4
n�1Y

j=0

�Zj

3

5 (Xn + iYn). (3)

A spin up |"i (down |#i) on qubit n corresponds to
zero (one) deuteron in the state |ni. As we deal with
single-particle states, the symmetry under permutations
plays no role here. To compute the ground-state en-
ergy of the deuteron we employ the following strategy.
We determine the ground-state energies of the Hamilto-
nian (1) for N = 1, 2, 3 and use those values to extrap-
olate the energy to the infinite-dimensional space. We
have H1 = 0.218291(Z0 � I) MeV, and its ground-state
energy E1 = h#| H1 |#i ⇡ �0.436 MeV requires no com-
putation. Here, I denotes the identity operation. For

E from exact diagonalization
N EN O(e�2kL) O(kLe�4kL) O(e�4kL)
2 �1.749 �2.39 �2.19
3 �2.046 �2.33 �2.20 �2.21

E from quantum computing
N EN O(e�2kL) O(kLe�4kL) O(e�4kL)
2 �1.74(3) �2.38(4) �2.18(3)
3 �2.08(3) �2.35(2) �2.21(3) �2.28(3)

TABLE I. Ground-state energies of the deuteron (in MeV)
from finite-basis calculations (EN ) and extrapolations to in-
finite basis size at a given order of the extrapolation for-
mula (6). The upper part shows results from exact diag-
onalizations in Hilbert spaces with N single-particle states,
and the lower part the results from quantum computing on
N qubits. We have E1 = �0.436 MeV. The fit at O(e�4kL)
requires three parameters and is only possible for N = 3. The
deuteron ground-state energy is �2.22 MeV.

N = 2, 3 we have (all numbers are in units of MeV)

H2 = 5.906709I + 0.218291Z0 � 6.125Z1

� 2.143304 (X0X1 + Y0Y1) , (4)

H3 = H2 + 9.625(I � Z2)

� 3.913119 (X1X2 + Y1Y2) . (5)

For the extrapolation to the infinite space we employ
the harmonic-oscillator variant of Lüscher’s formula [27]
for finite-size corrections to the ground-state energy [28]

EN = �
~2k2

2m

✓
1 � 2

�2

k
e�2kL

� 4
�4L

k
e�4kL

◆

+
~2k�2

m

✓
1 �

�2

k
�

�4

4k2
+ 2w2k�4

◆
e�4kL. (6)

Here, the finite-basis result EN equals the infinite-basis
energy E1 = �~2k2/(2m) plus exponentially small cor-
rections. In Eq. (6), L = L(N) is the e↵ective hard-
wall radius for the finite basis of dimension N , k is
the bound-state momentum, � the asymptotic normal-
ization coe�cient, and w2 an e↵ective range parame-
ter. For N = 1, 2 and 3 we have L(N) = 9.14, 11.45,
and 13.38 fm as the e↵ective hard-wall radius in the
oscillator basis with ~! = 7 MeV, respectively, and
L(N) ⇡

p
(4N + 7)~/(m!) for N � 1 [29]. Using the

ground-state energies EN for N = 1, 2 allows one to fit
the leading O(e�2kL) and subleading O(kLe�4kL) cor-
rections by adjusting k and �. Inclusion of the N = 3
ground-state energy also allows one to fit the smaller
O(e�4kL) correction by adjusting w2. The results of this
extrapolation are presented in the upper part of Table I,
together with the energies EN from matrix diagonaliza-
tion. We note that the most precise N = 2 (N = 3)
extrapolated result is about 2% (0.5%) away from the
deuteron’s ground-state energy of �2.22 MeV.
Variational wavefunction.—In quantum computing, a

popular approach to determine the ground-state energy
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FIG. 1. Low-depth circuits that generate unitary rotations in
Eq. (7) (panel a) and Eq. (8) (panel b). Also shown are the
single-qubit gates of the Pauli X matrix, the rotation Y (✓)
with angle ✓ around the Y axis, and the two-qubit cnot gates.

of a Hamiltonian is to use UCC ansatz in tandem with
the VQE algorithm [12, 15, 21]. We adopt this strat-
egy for the Hamiltonians described by Eqs. (4) and (5).
We define unitary operators entangling two and three or-
bitals,

U(✓) ⌘ e✓(a
†
0a1�a†

1a0) = ei
✓
2 (X0Y1�X1Y0), (7)

U(⌘, ✓) ⌘ e⌘(a
†
0a1�a†

1a0)+✓(a†
0a2�a†

2a0) (8)

⇡ ei
⌘
2 (X0Y1�X1Y0)ei

✓
2 (X0Z1Y2�X2Z1Y0).

In the second line of Eq. (8) we expressed the exponential
of the sum as the product of exponentials and note that
the discarded higher order commutators act trivially on
the initial product state |#""i. We seek an implementa-
tion of these unitary operations in a low-depth quantum
circuit. We note that U(⌘) and U(⌘, ✓) can be simplified
further because a single-qubit rotation about the Y axis
implements the same rotation as Eq. (7) within the two-
dimensional subspace {|#"i , |"#i}. Likewise Eq. (8) can
be simplified by the above argument except the first rota-
tion now lies within the {|#""i , |"#"i} subspace. The sec-
ond rotation, acting within the {|#""i , |""#i} subspace,
must be implemented as a Y -rotation controlled by the
state of qubit 0 in order to leave the |"#"i component un-
modified. The resulting gate decomposition for the UCC
operations are illustrated in Fig. 1.

Quantum computation.—We use the VQE [11]
quantum-classical hybrid algorithm to minimize the
Hamiltonian expectation value for our wavefunction
ansatz. In this approach, the Hamiltonian expectation
value is directly evaluated on a quantum processor with
respect to a variational wavefunction, i.e. the expectation
value of each Pauli term appearing in the Hamiltonian is
measured on the quantum chip. We recall that quantum-
mechanical measurements are stochastic even for an iso-
lated system, and that noise enters through undesired
couplings with the environment. To manage noise, we
took the maximum of 8,192 (10,000) measurements that
were allowed in cloud access for each expectation value on
the QX5 (19Q) quantum device. In contrast, the recent
experiment [13] by the IBM group employed up to 105

measurements and estimated that 106 would be neces-
sary to reach chemical accuracy on the six-qubit realiza-
tion of the BeH2 molecule involving more than a hundred
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�Ô
�

Z0

Z1

X0X1

Y0Y1

�1

0

1

�Ô
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FIG. 2. (Color online) Experimentally determined energies
for H2 (top) and expectation values of the Pauli terms that
enter the two-qubit Hamiltonian H2 as determined on the
QX5 (center) and 19Q (bottom) chips. Experimental (theo-
retical) results are denoted by symbols (lines).

Pauli terms. In addition to statistical errors, we address
systematic measurement errors by shifting and re-scaling
experimental expectation values as outlined in the sup-
plemental material of Ref. [13]. The expectation values
returned from the quantum device are then used on a
classical computer to find the optimal rotation angle(s)
that minimize the energy, or the parametric dependence
of the energy on the variational parameters is mapped
for the determination of the minimum [12].

Our results are based on cloud access to the QX5 and
the 19Q chips, which consist of 16 and 19 superconduct-
ing qubits, respectively, with a single qubit connected to
up to three neighbors. This layout is well suited for our
task, because the Hamiltonian (5) only requires up to
two connections for each qubit. We collected extensively
more data on the QX5 device than on the 19Q and only
ran the N = 2 problem on the latter.

Results.—Figure 2 shows hH2i (top panel) and the ex-
pectation values of the four Pauli terms that enter the
Hamiltonian H2 as a function of the variational param-
eter ✓ for the QX5 (center panel) and the 19Q (bot-
tom panel). We see that the measurements are close
to the exact results, particularly in the vicinity of the
variational minimum of the energy. Cloud access, and
its occasional network interruptions, made the direct
minimization of the energy surface via VQE very chal-
lenging. Instead, we determined the minimum energies
EQX5

2 ⇡ �1.80±0.05 MeV and E19Q
2 ⇡ �1.72±0.03 MeV

from fitting a cubic spline close to the respective mini-
mum.
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FIG. 1. Low-depth circuits that generate unitary rotations in
Eq. (7) (panel a) and Eq. (8) (panel b). Also shown are the
single-qubit gates of the Pauli X matrix, the rotation Y (✓)
with angle ✓ around the Y axis, and the two-qubit cnot gates.

of a Hamiltonian is to use UCC ansatz in tandem with
the VQE algorithm [12, 15, 21]. We adopt this strat-
egy for the Hamiltonians described by Eqs. (4) and (5).
We define unitary operators entangling two and three or-
bitals,

U(✓) ⌘ e✓(a
†
0a1�a†

1a0) = ei
✓
2 (X0Y1�X1Y0), (7)

U(⌘, ✓) ⌘ e⌘(a
†
0a1�a†

1a0)+✓(a†
0a2�a†

2a0) (8)

⇡ ei
⌘
2 (X0Y1�X1Y0)ei

✓
2 (X0Z1Y2�X2Z1Y0).

In the second line of Eq. (8) we expressed the exponential
of the sum as the product of exponentials and note that
the discarded higher order commutators act trivially on
the initial product state |#""i. We seek an implementa-
tion of these unitary operations in a low-depth quantum
circuit. We note that U(⌘) and U(⌘, ✓) can be simplified
further because a single-qubit rotation about the Y axis
implements the same rotation as Eq. (7) within the two-
dimensional subspace {|#"i , |"#i}. Likewise Eq. (8) can
be simplified by the above argument except the first rota-
tion now lies within the {|#""i , |"#"i} subspace. The sec-
ond rotation, acting within the {|#""i , |""#i} subspace,
must be implemented as a Y -rotation controlled by the
state of qubit 0 in order to leave the |"#"i component un-
modified. The resulting gate decomposition for the UCC
operations are illustrated in Fig. 1.

Quantum computation.—We use the VQE [11]
quantum-classical hybrid algorithm to minimize the
Hamiltonian expectation value for our wavefunction
ansatz. In this approach, the Hamiltonian expectation
value is directly evaluated on a quantum processor with
respect to a variational wavefunction, i.e. the expectation
value of each Pauli term appearing in the Hamiltonian is
measured on the quantum chip. We recall that quantum-
mechanical measurements are stochastic even for an iso-
lated system, and that noise enters through undesired
couplings with the environment. To manage noise, we
took the maximum of 8,192 (10,000) measurements that
were allowed in cloud access for each expectation value on
the QX5 (19Q) quantum device. In contrast, the recent
experiment [13] by the IBM group employed up to 105

measurements and estimated that 106 would be neces-
sary to reach chemical accuracy on the six-qubit realiza-
tion of the BeH2 molecule involving more than a hundred
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FIG. 2. (Color online) Experimentally determined energies
for H2 (top) and expectation values of the Pauli terms that
enter the two-qubit Hamiltonian H2 as determined on the
QX5 (center) and 19Q (bottom) chips. Experimental (theo-
retical) results are denoted by symbols (lines).

Pauli terms. In addition to statistical errors, we address
systematic measurement errors by shifting and re-scaling
experimental expectation values as outlined in the sup-
plemental material of Ref. [13]. The expectation values
returned from the quantum device are then used on a
classical computer to find the optimal rotation angle(s)
that minimize the energy, or the parametric dependence
of the energy on the variational parameters is mapped
for the determination of the minimum [12].

Our results are based on cloud access to the QX5 and
the 19Q chips, which consist of 16 and 19 superconduct-
ing qubits, respectively, with a single qubit connected to
up to three neighbors. This layout is well suited for our
task, because the Hamiltonian (5) only requires up to
two connections for each qubit. We collected extensively
more data on the QX5 device than on the 19Q and only
ran the N = 2 problem on the latter.

Results.—Figure 2 shows hH2i (top panel) and the ex-
pectation values of the four Pauli terms that enter the
Hamiltonian H2 as a function of the variational param-
eter ✓ for the QX5 (center panel) and the 19Q (bot-
tom panel). We see that the measurements are close
to the exact results, particularly in the vicinity of the
variational minimum of the energy. Cloud access, and
its occasional network interruptions, made the direct
minimization of the energy surface via VQE very chal-
lenging. Instead, we determined the minimum energies
EQX5

2 ⇡ �1.80±0.05 MeV and E19Q
2 ⇡ �1.72±0.03 MeV

from fitting a cubic spline close to the respective mini-
mum.

Example 4: Many-body nuclear physics

E

Deuteron ground state energy
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Summary
Quantum computing offers potential opportunities to vastly expand our 
understanding of QCD

Real-time dynamics of scattering and hadronization
High-temperature/density QCD
Many-body nuclear structure
…

Short-term: Current quantum hardware is too small and noisy to achieve 
quantum advantage, but it is an important time to explore potential applications

Long-term: Determining whether QCD can be simulated efficiently by 
quantum computers will give us profound insights about nature

Creating and probing the properties of the quark-gluon plasma

Quarks & gluons are confined in hadrons in ordinary matter. Heavy-ion collisions deposit huge
energy in a finite region, creating quark-gluon plasma (QGP) medium for �x ,�⌧ ⇠ 10 fm.

ALICE event

Only see final state.

What are medium’s properties?

The created QGP demonstrates hydrodynamic and near-equilibrium behaviors
! we can learned a lot long-wave length properties ⌘/s, ⇣/s, · · ·

We still need additional probes to test its microscopic structures.
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Outline

1. Quantum advantage

2. QC for HEP/NP

3. Hands-on: Circuit synthesis
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Hands-on: Circuit synthesis
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