Quantum Computing Bootcamp for High-Energy and Nuclear Physics Jefferson Lab

June 2I, 2023

James Mulligan
University of California, Berkeley

Outline

I. Quantum advantage

2. QC for HEP/NP

3. Hands-on: Circuit synthesis

Outline

I. Quantum advantage

Recap

Quantum bit (qubit): $\quad|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\binom{a_{0}}{a_{1}}$
When we measure the state $|\psi\rangle$, we obtain either:

- State $|0\rangle$, with a probability $\left|a_{0}\right|^{2}$
- State $|1\rangle$, with a probability $\left|a_{1}\right|^{2}$

For N qubits, there are 2^{N} amplitudes
e.g. $\quad|\psi\rangle=a_{1}|000\rangle+a_{2}|001\rangle+a_{3}|010\rangle+a_{4}|011\rangle+a_{5}|100\rangle+a_{6}|101\rangle+a_{7}|110\rangle+a_{8}|111\rangle$

A quantum operation modifies all of these 2^{N} amplitudes simultaneously!

$$
|a\rangle=\sum_{i=1}^{2^{N}} a_{i}\left|\psi_{i}\right\rangle \rightarrow|b\rangle=\sum_{i=1}^{2^{N}} b_{i}\left|\psi_{i}\right\rangle
$$

Quantum circuits

Nothing more than (clever) unitary matrix multiplications!

Example: SWAP circuit

CNOT gate

$$
\begin{aligned}
\operatorname{SWAP}(|a\rangle \otimes|b\rangle) & =\text { CNOT }_{0,1} \times C N O T_{1,0} \times C N O T_{0,1} \times\binom{ a_{0}}{a_{1}} \otimes\binom{b_{0}}{b_{1}} \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1} \\
a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{l}
b_{0} a_{0} \\
b_{0} a_{1} \\
b_{1} a_{0} \\
b_{1} a_{1}
\end{array}\right)=|b\rangle \otimes|a\rangle
\end{aligned}
$$

Where does quantum advantage come from?

A quantum operation modifies 2^{N} amplitudes simultaneously

$$
|a\rangle=\sum_{i=1}^{2^{N}} a_{i}\left|\psi_{i}\right\rangle \rightarrow|b\rangle=\sum_{i=1}^{2^{N}} b_{i}\left|\psi_{i}\right\rangle
$$

However: we cannot access the quantum amplitudes $\left\{a_{i}\right\}$ directly!

This is the major challenge: How can we take advantage of the exponential efficiency of quantum operations when we only access one randomly sampled state at a time?

QC can solve some classically hard problems

P: Polynomial-time solution on classical computer
NP: Polynomial-time verification on classical computer BQP: Polynomial-time solution on quantum computer

QC can solve some classically hard problems

Quantum advantage

2019

Article

Quantum supremacy using a programmable superconducting processor Google
 Martinis et al., Nature (2019)

53-qubit superconducting circuit device
Algorithm: sampling of random circuits
O $\left(10^{3}\right)$ times faster than best classical supercomputers

See also: Pan et al., PRL (202I)

2020-202 |
Quantum computational advantage using photons
Han-Sen Zhong ${ }^{1,2 *}$, Hui Wang ${ }^{1,2 *}$, Yu-Hao Deng ${ }^{1,2 *}$, Ming-Cheng Chen ${ }^{1,2 *}$, Li-Chao Peng ${ }^{1,2}$ Yi-Han Luo ${ }^{1,2}$, Jian Qin ${ }^{1,2}$, Dian Wu ${ }^{1,2}$, Xing Ding ${ }^{1,2}$, Yi Hu ${ }^{1,2}$, Peng Hu ${ }^{3}$, Xiao-Yan Yang ${ }^{3}$, Wei-Jun Zhang ${ }^{3}$, Hao Li^{3}, Yuxuan Li 4, Xiao Jiang ${ }^{1,2}$, Lin Gan 4, Guangwen Yang ${ }^{4}$, Lixing You ${ }^{3}$, Zhen Wang ${ }^{3}$, Li Li ${ }^{1,2}$, Nai-Le Liu ${ }^{1,2}$, Chao-Yang Lu ${ }^{1,2}$, Jian-Wei Pan ${ }^{1,2} \dagger$

Pan et al., Science (2020)

Photonic device - special-purpose
Algorithm: boson sampling
Claim: $\mathcal{O}\left(10^{14}\right)$ times faster than best classical supercomputers

Variational Quantum Eigensolver

Use the variational principle to estimate ground state energy:

$$
E_{\text {trial }}=\left\langle\psi_{\text {trial }}\right| H\left|\psi_{\text {trial }}\right\rangle \geq E_{0}
$$

Hybrid quantum-classical algorithm

Quantum
computer

Choose parameters $\theta_{\text {trial }}$ in a quantum circuit $U(\theta)$

Initialize the trial wavefunction:
$\left|\psi_{\text {trial }}\right\rangle=U(\theta)|0 \cdots 0\rangle$

Measure the energy:

$$
E_{\text {trial }}=\left\langle\psi_{\text {trial }}\right| H\left|\psi_{\text {trial }}\right\rangle
$$

Variational Quantum Eigensolver

Use the variational principle to estimate ground state energy:

$$
E_{\text {trial }}=\left\langle\psi_{\text {trial }}\right| H\left|\psi_{\text {trial }}\right\rangle \geq E_{0}
$$

Hybrid quantum-classical algorithm

Quantum
computer

Choose parameters $\theta_{\text {trial }}$ in a quantum circuit $U(\theta)$

Initialize the trial wavefunction:

$$
\left|\psi_{\text {trial }}\right\rangle=U(\theta)|0 \cdots 0\rangle
$$

Classical optimizer (e.g. SPSA)

Compare $E_{\text {trial }}$ to $E_{\text {min }}$

Measure the energy:

$$
E_{\text {trial }}=\left\langle\psi_{\text {trial }}\right| H\left|\psi_{\text {trial }}\right\rangle
$$

- Shor's factoring
- Grover search
- Simulation

Future applications of quantum computers

Quantum algorithms

Shor's factoring algorithm

Task: Find prime factors of an integer

Exponential speedup compared to classical algorithms
$\mathcal{O}\left((\log N)^{2} \ldots\right) \quad$ vs. $\quad \mathcal{O}\left(e^{1.9(\log N)^{1 / 3} \ldots}\right)$

Grover's search algorithm

Task: Find marked entry in an unordered list

Polynomial speedup compared to classical algorithms

$$
\mathcal{O}(\sqrt{(N)}) \quad \text { vs. } \quad \mathcal{O}(N)
$$

Quantum simulation

Task: Given the Hamiltonian of a quantum mechanical system, simulate its dynamical evolution

- Quantum chemistry, material design, nuclear dynamics, ...

That is, solve the time-dependent Schrödinger equation:

$$
H|\psi(t)\rangle=i \hbar \frac{d}{d t}|\psi(t)\rangle
$$

The solution is just a unitary evolution!

$$
|\psi(t)\rangle=U_{H}|\psi(0)\rangle \quad \text { where } \quad U_{H}=e^{-i H t / \hbar}
$$

It is exponentially expensive to simulate an N -body quantum system on a classical computer: 2^{N} amplitudes!

- Cannot simulate more than $\mathcal{O}(10-100)$ particles

Quantum simulation

A quantum computer can naturally simulate a quantum system
(I) Initial state preparation

$$
|0 \cdots 0\rangle \rightarrow|\psi(0)\rangle
$$

(2) Time evolution

Need efficient encoding of U_{H} into quantum gates, e.g. local interactions
(3) Measurement

- Shor's factoring
- Grover search
- Simulation

- Shor's factoring
- Grover search
- Simulation

Outline

2. QC for HEP/NP

Solving the equations of QCD

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{j=1}^{6} \bar{q}_{j}\left(i \gamma^{\mu} D_{\mu}-m_{j}\right) q_{j}
$$

Perturbative QCD

For $\alpha_{s} \ll 1$, compute scattering amplitudes with Feynman diagrams

$$
\sigma=\sigma^{(0)}+\alpha_{s} \sigma^{(1)}+\alpha_{s}^{2} \sigma^{(2)}+\ldots
$$

...but no strong coupling!

Lattice QCD

For low-density systems, compute static quantities with lattice regularization

- Hadron spectra
- Deconfinement transition
- Chiral symmetry restoration
...but no dynamics!

Real-time dynamics

What are the dynamics that confine quarks and gluons into hadrons?

How does a high-energy quark or gluon fragment into a jet?

Quantum simulation

A quantum computer can naturally simulate a quantum system described by a Hamiltonian H
(I) Initial state preparation

$$
|0 \cdots 0\rangle \rightarrow|\psi(0)\rangle
$$

(2) Time evolution

$$
\text { where } U_{H}=e^{-i H t / \hbar}
$$

(3) Measurement

alona

Simulating quantum field theories

There is an extra complication if we want to simulate QCD: it is a quantum field theory - the particle number is not fixed
\longrightarrow This requires us to simulate fields at all points in spacetime: lattice QCD

Simulating quantum field theories

There is an extra complication if we want to simulate QCD: it is a quantum field theory - the particle number is not fixed
\longrightarrow This requires us to simulate fields at all points in spacetime: lattice QCD

However, traditional Lattice QCD cannot simulate dynamics due to infamous sign problem

$$
\text { Integrals of form: } \int e^{i \mathscr{L} t}
$$

Real time

Imaginary time

Quantum computers: directly simulate the Hamiltonian formulation of QCD

Example I: Scattering in scalar field theories

Can be simulated efficiently using quantum computers!
Jordan, Lee, Preskill (2014)

Example 2: Hadronization

Schwinger model: QED in I+ID

- Confinement
- Chiral symmetry breaking

Real-time picture of string breaking mechanism

Long-term goal: QCD hadronization

Example 3: QC for hot/dense QCD

High density QCD: Lattice QCD can only calculate static quantities at llow density

Real-time dynamics of probes evolving through the quark-gluon plasma

In vacuum: perturbative QCD

- No sense of "time evolution"

In medium: must combine probe evolution with hydrodynamic evolution of the QGP

Example 4: Many-body nuclear physics

Hamiltonian obtained from effective field theory

$$
H_{N}=\sum_{n, n^{\prime}=0}^{N-1}\left\langle n^{\prime}\right|(T+V)|n\rangle a_{n^{\prime}}^{\dagger} a_{n}
$$

VQE circuit

Deuteron ground state energy

Summary

Quantum computing offers potential opportunities to vastly expand our understanding of QCD

- Real-time dynamics of scattering and hadronization
- High-temperature/density QCD
- Many-body nuclear structure
- ...

Short-term: Current quantum hardware is too small and noisy to achieve quantum advantage, but it is an important time to explore potential applications

Long-term: Determining whether QCD can be simulated efficiently by quantum computers will give us profound insights about nature

Outline

3. Hands-on: Circuit synthesis

Hands-on: Circuit synthesis

https://colab.research.google.com/drive/IfSWR0q8y7vDxotqaVGvT_Or3uw5GaBTG?usp=share_link

"Copy to Drive" —> Then you can edit and save your own copy

