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Data Science at Jefferson Lab

Mission:
• Provide world-class data science solutions to advance research in nuclear physics 

by working with the subject matter experts at Jefferson Lab, partnering 
universities and Labs, and the Department of Energy.

• Provide world-class data science solutions to scientific applications relevant to the 
regional scientific community

Vision:
• Expand the capability and capacity of data science at JLab
• Create a collaborative data science research hub to:

1. Work with regional partners on challenging scientific problems
2. Champion education and research opportunities with regional universities 

and industry
3. Reduce the carbon footprint by optimizing the data science workflow and 

algorithms
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Current Portfolio
DOE Nuclear Physics:

• Quantom SciDAC (with ANL, VTech, ODU)
• Working with the experimental Halls (Tracking, etc.)
• Data Science contributing effort for AIEC (lead by EPSCI)

DOE Basic Energy Science:
• Machine Learning for Improving Accelerator and Target Performance (with ORNL)
• Collaborating with SLAC on application of ML-based controls for accelerators

DOE Advanced Scientific Computing Research:
• Data-Driven Decision Control for Complex Systems (with PNNL, ORNL, UC)

Non-DOE:
• Hampton Roads Digital Twin (with ODU)

Laboratory Directed Research & Development (LDRD):
•  Multi-objective Optimization of Heat Load and Trip Rates in CEBAF (FY22)
•  Adaptive Strategies for Optimal Computing Availability (FY23)
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JLab Data Science Pillars
• Applications:

• Nuclear Physics
• Advanced Scientific Computing
• Health & Climate

• Focused Methods & Algorithms:
• Uncertainty Quantification
• Interpretability and Explainability
• Design & Control

• Infrastructure:
• JLab ML & Data Hub
• JLab Data Science software

Applications

Methods & Algorithms

Infrastructure

4



DOE ASCR - BRN for SciML
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Figure 1: Foundational research themes of SciML must tackle the challenges of creating domain-
aware, interpretable, and robust ML formulations, methods, and algorithms.
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Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related
applications.
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Uncertainty Quantification for ML
Develop methods that include uncertainty estimates in 
machine learning models
• Applications:

• Data driven ML-based surrogate models
• Real time controller
• Anomaly detections

• Requirements:
• Out-of-distribution uncertainties
• Auto-calibration
• Single inference

• Hardware considerations:
• Memory
• Inference time
• Performance trade-off due to approximations
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Uncertainty Quantification For Reliable AI/ML
• Goal: Develop and integrate new UQ methods for reliable AI/ML
• Problem space:

－Applications with high-dimensional continuous input features
－Focused on large data sets for DOE applications 
－Safety constraints that should never or at least rarely be violated.
－Inference that must happen in real-time at the control frequency of 

the system.
• Applications: 

－Anomaly and prognostication
－ML-based controls 

June 15, 2023 7



Uncertainty Aware Siamese Model (“Classification”)
• We enhanced our models by adding GP 

approximation layer which provides the uncertainty 
estimate

• Results from similarity model showed a ~4x 
improvement in performance over previously 
published results, it is also much better than a vanilla 
Auto-encoder

• The ROC curves show true fault detection rate above 
60% while keeping the false alarms below 0.5% (not 
optimized)

• We introduced an out-of-domain anomaly, labelled 
1111 (red), the UQ-based model performed similar in 
classifying the anomalies and indicated high 
uncertainty (as expected)

W. Blokland, K. Rajput, M. Schram, T. Jeske, et al 2022 Phys. Rev. Accel. Beams 25, 122802



Data Driven UQ ML-based Surrogate Models (Regression)
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QR model

• Compare different techniques: DQR, BNN, DNGPA
• DQR models have great performance for training distribution but not for OOD
• BNN models do a better job to estimate OOD
• DGPA models are distance aware by design resulting in better OOD estimation 

M. Schram, K. Rajput, et al 2023 Phys. Rev. Accel. Beams 26, 044602



Predicting HVCM Capacitance with Uncertainty Quantified ML

• Goal:
－ Develop a UQ model to predict the capacitance of 3 capacitors in the SNS 

HVCM system using currently available sensor data
• Techniques:

－ Singular Value Decomposition, Residual Networks, Distance Preservation 
and bi-Lipschitz Constraints, Gaussian Process Approximation

• Results:
－ Achieves <1% error with accurate UQ for in-distribution data
－ Provides significantly better OOD performance than other methods
－ Submitted to Machine Learning with Applications
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MULTI-MODULE CVAE TO PREDICT HVCM FAULTS IN THE SNS
● Goal: Predict an upcoming machine failure before it occurs to improve 

the reliability of the HVCMs and reduce the down time for the SNS facility

● How: We use pulses leading to failure to allow for future forecasting 

● Method: Condition the Variational Autoencoder (VAE) model on the 
module unique identifier to learn the association between waveforms and 
their modules
o By using all 15 modules, we eliminate the need to train a Single-

module and increase the number of statistics

● Paper: Accepted for publications at Machine Learning with Applications 
journal: https://arxiv.org/pdf/2304.10639.pdf
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Figure 2: Compare the AUC values between single-module and multi-module using six types of faults 
across several modules. The error bar is ± 1 Standard Deviation (SD) error generated by sampling the 
latent Z of each Method.

Figure 1: KDE distributions of the MSE from reconstructing normal (green) and faulty 
waveforms (red) for three fault types, with the corresponding ROC curve for each fault.

Figure 3: Loss surface, where x- and y-axis are two random directions in weights space 
generated using filter normalization method. Multi-Module shows convex-like surface, while 
Single-module hs chaotic behaviour. 

https://arxiv.org/pdf/2304.10639.pdf


Improving System Controls Through AI/ML

• Goal: Apply UQ based AI/ML methods to improve system controls
• Applications: Detector and Accelerator controls
• Techniques: Bayesian Optimization, Genetic Algorithms, Model 

Predictive Control, Reinforcement Learning

June 15, 2023 12

JLab Hall D CDC Calibration (lead by EPSCI)

Applied RL for FNAL Booster

T. Jeske et al 2022 JINST 17 C03043
T. Jeske et al 2023 J. Phys.: Conf. Ser. 2438 012132

M. Schram et al 2022 Phys. Rev. 
Accel. Beams 24, 104601



• Goal: Improve charged particle tracking with the help of Graph Neural 
Networks (GNNs) and potentially run in near real time on edge computing

• Application: Charged Particle Tracking at GlueX, CLAS, EIC, and many 
more…

• Techniques: Graph Analytics, GNNs, GNNs on FPGA, Physics Informed 
ML

Raw Data (Hits) Hitgraph

GNN
Model

Initial Results

Predicting True edges belonging 
to tracks with GNNs

GRAPH NEURAL NETWORKS FOR TRACKING



FEMTOSCALE IMAGING OF NUCLEI USING EXASCALE PLATFORMS
• The goal is to extract a quark and gluon tomography of nuclei and 

answer important questions on the nature of visible matter at the 
femtoscale

• Develop modular components to dynamically compose workflows
• Multiple AI/ML components that need to scale to LCFs

Idealized 
Theory 
Events

Detector 
model

Event level 
Discriminator

Experimental
Events

Optimize QCF parameters

Parameter 
Generator

Parameters

Trial QCF 
model

Trial PMD

MCMC

Event-level QCF inference framework

Simulated
 Events

Noise

Module 1

Module 2
Module 3

Module 4



FRAMEWORK

• Developed a common and modular 
framework 

• Includes: 
- Core base classes
- ProxyApp, GPDs Theory
- Experimental (filter, detector, etc.)
- GAN workflows
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PROXY APP (NOT REAL PHYSICS)

• Only considering u and d contribution and has not physical equivalent
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CLOSURE TEST

• Use the Proxy App for closure tests and scaling
• We generate toy data (1M events) using fix parameters in the theory module
• We train an ensemble of 15 GAN workflows
• Results are from ideal setup
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ADDITIONAL PROXY APP RESULTS 

• Including some detector effects:
- Detector with 5% / 12% resolution effect on sigma1 / sigma2 
- Added correlations between sigma1 / sigma2
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SCALING USING COMMON TOOLS
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•Initial scaling studies where based 
on Horovod and Fairscale 

•Both didn’t scale very well

•The stochastic nature of the 
workflow doesn’t work well with 
allreduce techniques



EXPLORING SCALING USING ENSEMBLES
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• Simplest approach is to have completely decoupled learning and take aggregate 
predictions at fixed time intervals 

• This allows us to study the model stability and accelerate convergence

100k



IMPACT FROM SAMPLE STATISTICS
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• Statistical impact in results: 1k samples (left) and 10k samples (right)
• Clear bias that need to be understood (difference between parent and sampled 

distributions)

1k 10k



BEYOND THE PROXY APP

• The proxy app allows us to study the framework and scaling 
• We need to also study potential real use case (inclusive DIS, etc.)
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LEARNING FROM GPD IMAGES

• The initial goal is to ensure that we can generate images 
that look like the designed “data” images

• This is the MNIST example for NP J 
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LEARNING FROM GPD IMAGES

• We now add the evolution code in the mix
• The evolution code is slow and require a lot of memory
• In fact, we cannot run on GPU due to memory requirement (on A100)
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CHALLENGES

• Gradient-based approach require all components to be differentiable for 
backpropagation

- This is a challenge for traditional sampling techniques

• Gradient-based optimizers store large amount of information
- This is a problem when backpropagating through evolution code, etc.

• Elements of the current workflow have stochastic execution times which doesn’t 
scale using allreduce methods
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Thank you
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