

The MOLLER Experiment

Caryn Palatchi Indiana University JLUO Meeting June 28, 2023

MOLLER Collaboration: ~ 160 authors, 37 institutions, 6 countries

Spokesperson: K. Kumar, UMass, Amherst Executive Board Chair and Deputy Spokesperson: M. Pitt, Virginia Tech

Other Executive Board Members

D. Armstrong (William & Mary), J. Fast (JLab), C. Keppel (JLab), F. Maas (Mainz), J. Mammei (Manitoba), K. Paschke (UVa), P. Souder (Syracuse U.)

MOLLER Working Groups

Polarized Source Beam Instrumentation Hydrogen Target **Spectrometer Integrating Detectors Tracking Detectors Hall Integration Polarimetry Electronics/DAQ/Offline** Simulations **Physics Extraction MOLLER Science Primer**

Parity-Violating Electron Scattering

unpolarized target

• New physics: measure fundamental coupling constants to test completeness of standard model

• **MOLLER:** measure fundamental constant Cee in electron-electron scattering

$$\sigma \propto |M_{\gamma} + M_{\text{weak}}|^2$$

~ $|M_{\gamma}|^2 + 2M_{\gamma}(M_{\text{weak}})^* + \dots$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\mathbf{M}_{\gamma}^* \mathbf{M}_{\mathbf{W}}}{\mathbf{M}_{\gamma}^2}$$

PVES measures Apv

 Incident beam is longitudinally polarized •Change sign of longitudinal polarization •Measure fractional rate difference

Next-generation Experiments will provide precise BSM probe

Broad program studying the structure of protons and nuclei, and searching for new (beyond Standard Model) physics

⁷ Experiments measure increasingly smaller Apv

 $A_{PV} = 35.6 \, ppb$ $\delta(A_{PV}) = 0.72$ parts per billion

- $\sim 3 \times 10^{18}$ electrons detected

MOLLER Purpose

- Measure the weak charge of the electron to extremely high precision
- Constrains coupling coefficient Cee
- Extend the reach of new physics beyond the Standard Model

Interference term between the electromagnetic and weak amplitudes gives rise to parity-violating asymmetry,

$$A_{PV} \Rightarrow Q_W^e \Rightarrow sin^2 \theta_W \Rightarrow C_{ee}$$

 $Q_W^e = 1 - 4 \sin^2 \theta_W = -2C_{ee}$

which relates directly to the electron weak charge, weak mixing angle, and ee coupling coefficient

 $\delta(Q^e_W) = \pm 2.1 \% (stat) \pm 1.0 \% (syst)$ $sin^2 \theta_W$: ±0.00026(stat) ±0.00013(syst)

Ultra-precise measurement sensitive to new parity-violating interactions

The Standard Model Prediction: Remarkably Well-Known

Theory: Standard Model prediction is tight and MOLLER measurement will constrain BSM theories

2-loop Calculations

2 groups working on **2**-loop Calculations

Aleksejevs and Barkanova Series of publications

Du, Freitas, Patel and Ramsey-Musolf Recent closed-fermion loops: arXiv:1912

MOLLER: $\delta(Q^e_W) = \pm 2.1 \%$ (stat.) $\pm 1.1 \%$ (syst.)

(e)

Measurements test for small deviations from precisely calculated SM processes \rightarrow new possible couplings

Consider
$$f_1 f_1 \rightarrow f_2 f_2$$
 or $f_1 f_2 \rightarrow f_1 f_2$ A_{PV}
$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$
 Eichter

 $\delta(Q^{e}_{W}) = 2.3\% \qquad \frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F|\Delta Q_{W}^e|}}$

$$\simeq \frac{246.22~{\rm GeV}}{\sqrt{0.023 Q_W^e}} = 7.5~{\rm TeV}.$$

Conventional Collider Contact Interaction Analysis: $\implies |g_{_{RR}}^2 - g_{_{LL}}^2| = 4\pi$

Mass Reach scale ~ 38TeV Erler *et al.*, Ann.Rev.Nucl.Part.Sci. 64 (2014)

$$\overline{-g_{LL}^2} = 2\pi \implies \Lambda = up \text{ to } 47 \text{ TeV}$$

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider

Quantifying Discovery Potential: Weak mixing angle precision

BSM: The Dark Z

Heavy Photons (A' mixed with Z₀): The Dark Z

$Q_W^e \implies sin^2 \theta_W$

Interpreting each result as an independent measure of $\sin^2\theta_W$ provides a quick way to put these all one one plot, but:

- interference in precision PVES measurements away from the Z resonance enhances new physics sensitivity
- Room for 10sigma discovery potential
- But additionally...

Quantifying Discovery Potential : Coupling coefficients phase space

$$\begin{aligned} \mathcal{L}^{PV} &= \frac{G_F}{\sqrt{2}} [\bar{e}\gamma^{\mu} \gamma_5 e(C_{1u} \bar{u}\gamma_{\mu}u + C_{1d} \bar{d}\gamma_{\mu}d) \middle| \begin{array}{l} C_{1q} \propto (g_{RR}^{eq})^2 + \\ &+ \bar{e}\gamma^{\mu} e(C_{2u} \bar{u}\gamma_{\mu}\gamma_5 u + C_{2d} \bar{d}\gamma_{\mu}\gamma_5 d)] \\ &+ C_{ee}(e\gamma^{\mu}\gamma_5 e \bar{e}\gamma_{\mu}e) \end{array} \begin{vmatrix} C_{1q} \propto (g_{RR}^{eq})^2 + \\ C_{2q} \propto (g_{RR}^{eq})^2 + \\ C_{ee} \propto (g_{RR}^{ee})^2 \end{vmatrix} \end{aligned}$$

- ee and ep elastic and e-D DIS are all unique phase space - the precision on $\sin^2\theta_W$ is not the story
- Constraining the space of BSM physics is the story

 $+ (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \implies PV$ elastic e-N scattering Atomic parity violation PV elastic e-N scattering, $-(g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \implies$ PV deep inelastic scattering $-(g_{LL}^{ee})^2 \implies PV M$ scattering

Constraining the space of BSM physics: Complimentary Measurements Many new physics models give rise to new neutral current interactions Heavy Z's and neutrinos, technicolor, compositeness, extra dimensions, SUSY...

Buckley and Ramsey-Musolf Phys.Lett. B712 (2012) 261-265

MOLLER: BSM and Sensitivity to New Physics Complimentary Measurement with LHC

LHC observes an anomaly

MOLLER will help provide constraints to choose between various BSM theories

• ex) TeV scale Z'bosons

LHC agrees with the Standard Model to 14TeV

MOLLER: provide access to hidden weak scale BSM physics scenarios that could escape LHC detection

• ex) MeV-scale "Dark" Z_d^0

MOLLER: BSM and Sensitivity to New Physics Many new physics models give rise to new neutral current interactions Heavy Z's and neutrinos, technicolor, compositeness, extra dimensions, SUSY, dark Z...

MOLLER Apparatus

Unique, 7-sector design, to optimize acceptance for identical particles

Acceptance-defining collimator

- $\theta_{lab} \sim 5-18 \text{ mrad}, \text{ E'} = 2-8 \text{ GeV}$
- 134 GHz Møller rate
- Low noise beam with 1nm control of average beam position on target

Five separate toroids, no iron

Focal plane instrumented with array of thin quartz detectors

Accepted particles spread over full azimuth at the

rate(GHz/uA/sep/5mm) vs r(mm)

Moller Uncertainty Requirements

65uA, ~90% polarization, 344 PAC days 2 kHz helicity flip rate with 10 μ s settle time (past: 1 kHz, 60 μ s T_{settle})

35ppb Apv

Error Source	Fraction	nal Er
	Run 1	Ult
Statistical	11.4	
Absolute Norm. of the Kinematic Factor	3	
Beam (second moment)	2	
Beam polarization	1	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	
Beam (position, angle, energy)	2	
Beam (intensity)	1	
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	1.5	
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	C
Transverse polarization	2	
Neutral background (soft photons, neutrons)	0.5	
Linearity	0.1	
Total systematic	5.5	

 $\operatorname{ror}(\%)$ timate 2.1 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.15 0.2

- 0.1 0.1
- 1.1

Stringent Uncertainty Goals

- Statistical goal is <1ppb !
- Total Systematic < 0.5 ppb!
- Each indiv. systematic is <1% of Apv
- Minimal Beam Asymmetries
- Well measured & controlled polarization
- Minimal and well characterized backgrounds

RTP Pockels Cell (Rubidium Titanyle Phosphate) currently in operation in Cebaf capable of fast ~10us switching for 2kHz

Measuring this small asymmetry

Place a detector where it sees the Møller scattered electron

Analog integrate detector current

Measure to 0.01% at 1 kHz, repeat for a year straight

Specialized experimental techniques

- Precise spectrometer to separate signal
- Low noise electronics

•

• Precise beam control and measurement

16

Full Azimuthal Coverage: Identical Particles

Unique concept allows for full azimuthal acceptance (effectively) even leaving space for coils but makes for a challenging design

17

Types of HCBA that contribute to PVES systematics

Any change in the polarized beam, correlated to helicity reversal, can be a potential source for a false asymmetry

Spot-size *Asymmetry*

Polarized Beam Source RTP Cell fast switching for 2kHz (Rubidium Titanyle Phosphate)

Spot-size Asymmetries from 2nd moment Polarization Gradient

HCBA contributions

	Error
Systematic	0.2ppb
Intensity	0.1ppb
Position, E, angle	0.1ppb
Spot-size	0.12ppb

• The electron beam must be very symmetric to make this comparison, both forwards and backwards facing electron beams must have the same intensity and the same direction, position, and spot-size.

Magnet Concept

- long and skinny
- Bend scattered particles, separate ee from ep and photons
- Small angles and high beam power
- Large energy range (3-8 GeV)
- Focus both back & forward scattered electrons
- Two toroidal magnets (Upstream and Downstream)

0.5 x 2m

Main Detector

Radial distribution at detector plane 26.5 m from target

signal from backgrounds

Particle Type moller elastic inelastic 1300 r(mm)

Collimation & More Detectors

Collimator 1: long snout, collimates primary beam so what remains can go to the dump. ~3200 W

Collimator 2: wedges define the acceptance of the 7 septants Walls, collars, and lintels supplement the collimation $_{21}$

MOLLER status

Prototyping/construction/installation (2022-25)

- Final Design Reviews now complete
- Plan for Fall 2023 CD-2/3 review followed by approval
- Technically driven schedule is then ~15 months construction and ~18 months installation
- Now fully funded!
- Project currently on track to be ready to start installation as early as Fall 2024/Q1 2025 or when the hall becomes available

(*details beyond that depend on performance of CEBAF and delivery of *luminosity to SBS program*)

• Project itself currently on track to be ready to start commissioning as early as Spring 2026 subject to scheduling/installation start date

MOLLER MIE Project Schedule

MOLLED MIE CD 2a Schodula	Start E			20
WOLLER WIE CD-5a Schedule	Start	End	FQ1	FQ2
CD-3a Authorization	3/16/23	3/16/23		
Magnet Coil, Collimator Procurements	1/13/23	7/10/24		
Magnet Power Supply Procurement	1/13/23	6/21/24		
Beam Pipes and Bellows Procurements	1/13/23	4/3/24		
Hydrogen Target Procurements	1/13/23	8/17/23		
Moller Polarimeter Procurement	1/13/23	6/13/23		
CD-2/3	1/1/24	1/5/24		
CD-3a Scope Complete (L3 Milestone)	7/19/24	7/19/24		
Procurement/Fabrication/Assembly	1/5/24	11/6/24		
Assembly in Hall A	2/10/25	1/13/26		
Commissioning/KPP validation	1/13/26	3/5/26		
Ready for CD-4 (L3 milestone)	3/5/26	3/5/26		
CD-2/3 (L1 Milestone)	6/10/24	6/10/24		
CD-3a Scope Complete (L2 Milestone)	7/2/25	7/3/25		
All Equip Ready for Hall (L2 Milestone)	12/18/25	12/18/25		
CD-4 (L1 Milestone)	3/3/28	3/3/28		

2025 2026 2024 2027 2028 FQ3 FQ4 FQ1 FQ2 FQ3 FQ4

MOLLER Collaboration

~ 160 authors, 37 institutions, 6 countries K. Kumar: Contact J. Fast: Project Manager

Includes experience from E158, PREX, Qweak, PVDIS, HAPPEX, G-Zero

- Thank you collaboration, Jlab staff, engineers, project team!
- MOLLER represents an outstanding opportunity to take advantage of the unique instrument (11 GeV CEBAF beam) enabled by the 12 GeV upgrade
- Electroweak physics with PVES are a powerful component of the low energy fundamental symmetries program
- The science case remains compelling and the plan is to run physics at about the time that precision results from high luminosity phases of 14 TeV LHC are becoming available
- \bullet • MOLLER will search for new interactions with reach into new physics phase space that cannot otherwise be accessed
- Now we just have to do is build it and do it (construction and execution of MOLLER)

Summary

- 1. Collaboration
- 2. PVES measure Apv
- increasingly smaller Apv
- 4. MOLLER experiment Design
- 5. MOLLER is precise and measures Qwe and constrains Cee
- BSM theories
- 7. Quantifying Discovery Potential: Mass Reach Scale
- 8. Quantifying Discovery Potential : sin2thetaW precision
- 9. Quantifying Discovery Potential : Coupling coefficients phase space
- **10.New Physics Complementarity**
- 11.MOLLER Apparatus
- 12.MOLLER measuring the asymmetry integration at 2kHz
- 13.MOLLER full azimuthal coverage
- 14.MOLLER complex magnets/collimation
- 15.MOLLER Main detector: segmented for backgrounds
- 16.MOLLER Beam Control??
- **17.MOLLER Uncertainty Requirements**
- 18.MOLLER Status
- 19.Conclusion

Outline

3. Next-generation Experiments will provide precise BSM probe – experiments measure

6. Theory: Standard Model prediction is tight and MOLLER measurement will constrain

Prototyping/construction/installati DOE WE4 Strice of Nuclear Physics)

- Final Design Reviews now complete
- Plan for Fall 2023 CD-2/3 approval
- Technically driven schedule is then ~15 months construction and ~18 months installation
- Now fully funded!
- Project currently on track to be ready to start installation as early as Fall 2024/Q1 2025 or when the hall becomes available (*details beyond that depend on performance of CEBAF and delivery of *luminosity to SBS program*)
- Project on track to be ready to start commissioning as early as Spring 2026 subject to scheduling

M OLLER Schedule							20)21										20	22										2023	3									2	2024					
Review	Start	End	Jan Fe	eb M	ar Ap	r May	y Jun	Jul	Aug	Sep	Oct N	lov D)ec J	an Fe	eb M	lar Ap	or Ma	y Jun	Jul	Aug	Sep	Oct	Nov D	ec Ja	an Fe	b Ma	Apr	May	Jun J	ul A	ug Sep	p Oct	t Nov	Dec	Jan	Feb N	1ar /	Apr M	ay Ju	n Ju	I Au	gSep	Oct	Nov	Dec
PDR - Downsteam Toroid	3/29/21	3/29/21																																											
PDR - Trigger and DAQ	3/18/21	3/18/21																																											
PDR - Magnet Power Supplies, Leads, Jumpers	4/30/21	4/30/21																																											
PDR - Beam Pipes, Bellows and Windows	7/12/21	7/12/21																																											
PDR - GEM Modules	9/14/21	9/14/21																																											
PDR - Detector Systems (except GEMs)	1/12/22	1/14/22																																											
PDR - Hydrogen Target	1/20/22	1/20/22																																											
PDR - Spectrometers	5/23/22	5/24/22																																											
PDR - Shielding and Utilties	6/1/22	6/1/22		_								_	_		_						_			_																	_			_	
FDR - All Systems	12/5/22	12/8/22			_	_					_												-																		_			-	
CD-3a Directors Review	11/15/22	11/17/22													-		_						- 11																	-	-			-	
CD-3a Independent Project Review	1/10/23	1/12/23																																											
CD-3a Approval	2/12/23	2/12/23																																											
Independent Final Design Review	2/6/23	2/9/23																																											
CD-2/CD-3 Directors Review	5/9/23	5/13/23																																											
CD-2/CD-3 Independent Project Review	6/27/23	6/30/23																																											
CD-2/CD-3 ESAAB Approval	7/20/23	7/20/23		_								_	_								_		_	_																	_			_	
Long-Lead procurements	2/13/23	1/29/24													-																													-	
Construction	7/21/23	9/3/24																126	5																									_	
Installation	9/ 4/ 24	12/15/25																																								<i>\\\\\\</i>			

MOLLER Collaboration

~ 160 authors, 37 institutions, 6 countries

K. Kumar: Contact J. Fast: Project Manager

Includes experience from E158, PREX, Qweak, PVDIS, HAPPEX, G-Zero

MOLLER MIE Project Schedule

MOLLER schedule – CD-3a and beyond

- Working on completing final procurement packages for CD-3a scope -Intent is to have all requisitions in motion by July
- Completing planning (Performance Measurement Baseline) for CD-2/3 -Data freeze in May – no changes until we set baseline at end of CY2023
- Plan remains to complete fabrication/assembly/test outside Hall A by end of Q1 FY25

MOLLER MIE CD 22 Schodulo				20	23		
IVIOLLER IVITE CD-5a Schedule	Start	End	FQ1	FQ2	FQ3	FQ4	FQ1
CD-3a Authorization	3/16/23	3/16/23					
Magnet Coil, Collimator Procurements	1/13/23	7/10/24					
Magnet Power Supply Procurement	1/13/23	6/21/24					
Beam Pipes and Bellows Procurements	1/13/23	4/3/24					
Hydrogen Target Procurements	1/13/23	8/17/23					
Moller Polarimeter Procurement	1/13/23	6/13/23					
CD-2/3	1/1/24	1/5/24					
CD-3a Scope Complete (L3 Milestone)	7/19/24	7/19/24					
Procurement/Fabrication/Assembly	1/5/24	11/6/24					
Assembly in Hall A	2/10/25	1/13/26					
Commissioning/KPP validation	1/13/26	3/5/26					
Ready for CD-4 (L3 milestone)	3/5/26	3/5/26					
CD-2/3 (L1 Milestone)	6/10/24	6/10/24					
CD-3a Scope Complete (L2 Milestone)	7/2/25	7/3/25					
All Equip Ready for Hall (L2 Milestone)	12/18/25	12/18/25					
CD-4 (L1 Milestone)	3/3/28	3/3/28					

- Details beyond that depend on performance of CEBAF and delivery of luminosity to SBS program

						-				-								-
20	24			20	25			20	26			20	27			20	28	
FQ2	FQ3	FQ4	FQ1	FQ2	FQ3													
																		_

Figure of Merit

Identical particles.

Measure either forward or backward scattering.

Identical Particles

Since you only need either the forward or the backward scatter, accept forward+backward for half the azimuth

Unique concept allows for full azimuthal acceptance (effectively) even leaving space for coils but makes for a challenging design

MOLLER

Scanners

A Fundamental Parameter of the Electroweak Theory The Weak Mixing Angle

MOLLER Projection: $\delta(sin^2\theta_W) = \pm 0.00023 (stat.) \pm 0.00012 (syst.)$

 \pm 10 σ discovery potential at Q²<<Mz²

Mainz P2: 0.00031 (projected)

LHC (combined) and MOLLER/P2 (combined) will provide two combinations with uncertainties ~ 0.0002 in late-2020's

MOLLER Science Overview

Tevatron: 0.00033 (combined)

LHC (combined) : ~ 0.00036 systematics-dominated (pdf uncertainties)

PV-DIS at EIC

Measurement of A_{PV}^{DIS} modeled with ECCE detector

- Proton or deuterium, PDF uncertainty is under control
- Average over nuclear polarization
- 1% precision of e-beam polarimetry competes with statistics
- Int. Lumi. ~100 fb⁻¹ (~1yr@10³⁵)

Sensitivity to 4-Lepton Contact Interactions from Low Energy and Colliders

$$\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F |\Delta Q_W^e|}}$$

 $\simeq \frac{246.22 \text{ GeV}}{\sqrt{0.023 Q_W^e}} = 7.5 \text{ TeV}.$

Model	η^f_{LL}	η^f_{RR}	η^f_{LR}	η^f_{RL}
LL^{\pm}	± 1	0	0	0
RR^{\pm}	0	± 1	0	0
LR^{\pm}	0	0	± 1	0
RL^{\pm}	0	0	0	±1
VV^{\pm}	± 1	± 1	± 1	±1
AA^{\pm}	± 1	± 1	∓ 1	∓ 1
VA^{\pm}	± 1	∓ 1	± 1	∓ 1

Conventional Collider Contact Interaction Analysis: $\Rightarrow |g_{RR}^2 - g_{LL}^2| = 4\pi$

95% C.L. Limits

 $\Lambda^{
m ee}_{
m LL} \sim 27~{
m TeV} \qquad \Lambda^{
m ee}_{
m RR-LL} \sim 38~{
m TeV}$ **MOLLER** is accessing discovery space that cannot be reached until the advent of a new lepton collider

MOLLER Science Overview

Simultaneous fits to cross-sections and angular distributions LEP200 $\Lambda^{\rm ee}_{
m LL} \sim 8.3~{
m TeV}$ $\Lambda^{
m ll}_{
m LL} \sim 12.8~{
m TeV}$ $\Lambda^{
m ll}_{
m R.R.} \sim 12.2~{
m TeV}$ $\Lambda^{\rm ee}_{
m RR}\sim 8.2~{
m TeV}$ $\Lambda^{
m ll}_{
m VV}\sim 22.2~{
m TeV}$ $\Lambda_{
m VV}^{
m ee} \sim 17.7~{
m TeV}$

E158 Reach (actual limits asymmetric)

 $\Lambda^{\mathrm{ee}}_{\mathrm{LL}} \sim 12 \; \mathrm{TeV} \qquad \Lambda^{\mathrm{ee}}_{\mathrm{RR}-\mathrm{LL}} \sim 17 \; \mathrm{TeV}$

LEP-200 insensitive **MOLLER Reach**

Electroweak Structure Functions

Assuming integrated luminosity ~500 fb⁻¹

"Non-small x"

- •few % on $F_1^{\gamma Z}$ •10% on $g_1^{\gamma Z}$

$e^{-1} \rightarrow + - - ^{1}H, ^{2}H, ^{3}He$

proton

deuteron

$$F_1^{\gamma Z} \propto u + d + s$$

$$F_3^{\gamma Z} \propto 2u_v + d_v$$

$$g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$$

$$g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$$

$$egin{aligned} F_1^{\gamma Z} &\propto u + d + 2s \ F_1^{\gamma Z} &\propto u_v + d_v \ g_1^{\gamma Z} &\propto \Delta u + \Delta d + \Delta s \ g_5^{\gamma Z} &\propto \Delta u_v + \Delta d_v \end{aligned}$$

34

New (Low Energy) Physics Examples

Many different scenarios give rise to effective 4-electron contact interaction amplitudes: significant discovery potential

MOLLER Science Overview

Bend scattered particles, separate ee from ep and photons

Specta

- Small angles and high beam power
- Large energy range (3-8 GeV)
- Long target

Kent Paschke - UVa

• Two toroidal magnets (Upstream and Downstream) Collimation + "shields" or "blockers" vacuum pipe to take beam to dump

Simulation Workship - Experiment Overview

Switching faster - Use New Crystal KD*P Cell • RTP Cell

(Potassium Dideuterium Phosphate)

transition + ringing $\sim 100 \mu s$

Suffers from piezoelectric ringing At 2kHz helicity switching, 70-100µs deadtime is 20% loss of data (Rubidium Titanyle Phosphate)

transition $\sim 12 \mu s$

- No piezoelectric ringing up to 100kHz
- At 2kHz helicity switching, 12µs transition,
 - Deadtime reduced by ~10x

Figure 2-7: The four best $\sin^2 \theta_W$ measurements and the projected error of the

MOLLER proposal. The black band represents the theoretical prediction for $m_H = 126 \ GeV$ (Measured value $m_H = 124.98 \pm 0.28 \ GeV$ [28]).[1]

Design for Moller experiment Detector **Improve E158 by a factor of 5 %e**possible Hybrid Toroid measurement! Upstream

28 m

A_{PV} 35.6ppb to 0.72ppb precision $sin^2 \theta_W$:= 0.00026(stat) ±0.00013(syst) Mass Reach scales up to 47TeV

Mass Reach is ~600X the mass of the W mediator, ~400X the Higgs Mass

At 11GeV, Jlab high luminosity and stability make large improvement

Matches best collider (Z-pole)

HCBA contributions Liquid Toroid Hydrogen Systematic Target Intensity Position Electron Beam Spot-size

Theory Prediction and Radiative Corrections

The Standard Model Prediction: Remarkably Well-Known

 $A_{PV} = \frac{\rho G_F Q^2}{\sqrt{2\pi\alpha}} \frac{1-y}{1+y^4 + (1-y)^4} \{1 - 4\kappa(0)\sin^2\theta_W(m_Z)_{\overline{\text{MS}}}\}$ + $\frac{\alpha(m_Z)}{4\pi\hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi\hat{s}^2\hat{c}^2}(1-4\hat{s}^2)[1+(1-4\hat{s}^2)^2]$ + $F_1(y,Q^2) + F_2(y,Q^2)$ $\{ \kappa(0) \text{ known to 1\% of itself}_{0.245} \\ Erler and Ferro-Hernandez (2018) \}$ $\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - 4 \sin^2 \theta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$ δ(Q^ew) $\frac{\delta(Q_W)}{Q_W} \sim 10\% \Longrightarrow \frac{\delta(\sin^2 \theta_W)}{\sin^2 \theta_W} \sim 0.5\%$ ≾ 0.4% **2** groups working on **2**-loop Calculations **Aleksejevs and Barkanova** Series of publications Du, Freitas, Patel and Ramsey-Musolf (e) Recent closed-fermion loops: arXiv:1912.08220

MOLLER Science Overview

MOLLER at JLab

$$= Q_W^e \frac{Q^2 G_F}{\sqrt{2\pi\alpha}} \left(\frac{1-y}{1+y^4 + (1-y)^4} \right) \qquad Q_W^e = -2C_{ee}$$

 $A_{PV} \sim 32 \text{ ppb}$ $\delta(A_{PV}) \sim 0.8 \text{ ppb}$ $\delta(Q^e_W) = \pm 2.1 \% \text{ (stat.)} \pm 1.1 \% \text{ (syst.)}$

 $\delta(\sin^2 \theta_W) = \pm 0.00024 \text{ (stat.)} \pm 0.00013 \text{ (syst.)} \Longrightarrow \sim 0.1\%$ Matches best collider (Z-pole) measurement!

MOLLER Reach $~~\Lambda^{ m ee}_{ m RR-LL} \sim 38~{ m TeV}$

best contact interaction reach for leptons at low OR high energy To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

Weak Neutral Current (WNC) Couplings

 $C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \Longrightarrow$ $C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \implies$ PV deep inelastic scattering $C_{ee} \propto (g_{RR}^{ee})^2 - (g_{LL}^{ee})^2 \implies PV M oller scattering$

Parity-Violating Electron Scattering

 $\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e} \gamma^{\mu} \gamma_5 e(C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d)$ $+\overline{e}\gamma^{\mu}e(C_{2u}\overline{u}\gamma_{\mu}\gamma_{5}u+C_{2d}\overline{d}\gamma_{\mu}\gamma_{5}d)] \quad C_{2u} = -\frac{1}{2}+2\sin^{2}\theta_{W} \approx -0.04$ $+C_{ee}(e\gamma^{\mu}\gamma_{5}e\overline{e}\gamma_{\mu}e)$

 $\begin{array}{rcl} C_{1u} &=& -\frac{1}{2} + \frac{4}{3} \, \sin^2 \theta_W &\approx & -0.19 \\ C_{1d} &=& \frac{1}{2} - \frac{2}{3} \, \sin^2 \theta_W &\approx & 0.35 \end{array}$ $C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx$

PV elastic e-N scattering, **Atomic parity violation**

i, j = L, R

 $\mathcal{L}_{f_1f_2}$

 $\mathbf{Q}_{\mathbf{W}} = \mathbf{1} - 4\sin^2\theta_{\mathbf{W}}$ $Q_W^e G_F$

42

Krishna Kumar, May 10, 2021

MOLLER goal: up to 85 A on 150 cm LHw - 5 kW power Target Boiling

Fast helicity flipping = high speed camera

Target boiling is a noise source that can't be filtered out using correlations with beam monitors, it must be suppressed by taking data faster than the bubbles form

Moller is designed around a flip rate of at least 2 kHz

 The electron beam must switch back and forth very quickly between helicity states43

Target

