JLUO annual meeting, JLab, Newport News, VA, US

Hypernuclear Physics Program at JLab; Results and Future Prospects

Graduate School of Science, Kyoto Univ. **Toshiyuki Gogami** *Constitution* **for the JLab Hypernuclear Collaboration** June 28, 2023

T. Gogami (Kyoto U.), June 28, 2023

Hall A

- B. Pandey et al., PRC **105**, L051001 (2022)
- K.N. Suzuki et al., PTEP 2022, 1, 013D01 (2022)
- F. Garibaldi et al., PRC 99, 054309 (2019)
- G. M. Urciuoli et al., PRC 91, 034308 (2015)
- F. Cusanno et al., PRL 103, 202501 (2009)
- G. M. Urciuoli et al., NIMA612, 56-68 (2009)
- M. Iodice et al., PRL 99, 052501 (2007)

Hall C

- TG et al., PRC 103, L041301 (2021)
- TG et al., NIMA 900, 69–83 (2018)
- TG et al., PRC 94, 021302(R) (2016)
- TG et al., PRC 93, 034314 (2016)
- Y. Fujii et al., NIMA795, 351—363 (2015)
- L. Tang et al., PRC 90, 034320 (2014)
- S.N. Nakamura et al., PRL 110, 012502 (2013)
- TG et al., NIMA 729, 816-824 (2013)
- L. Yuan et al., PRC 73, 044607 (2006)
- T. Miyoshi et al., PRL 90, 232502 (2003)

Hypernuclei

Nucleon (N) up (u), down (d) quark

 Hypernucleus

Double Hypernucleus

2 /23

Baryon-baryon (BB) interaction

Baryon Octet $J^{\pi} = \frac{1}{2}^{+}$ (ground state)

T. Gogami (Kyoto U.), June 28, 2023

Nuclear force

(= Strong force between Ns)

3 /23

Strong force between **YN/YY** ← Hypernuclear spectroscopy

More general BB int.

Hyperons' lifetime are too short…

4 /23

5 /23 Recent progress in YN scattering experiment

K. Miwa et al., PRC 104, 045204 (2021)

J-PARC E40 Experiment

T. Gogami (Kyoto U.), June 28, 2023

Σ -p elastic

 $\Sigma^{-}p \rightarrow \Lambda n: K.$ Miwa et al., Phys. Rev. Lett. 128, 072501 (2022) $\Sigma^{+}p: T.$ Nanamura et al., <u>arXiv:2203.08393</u> [nucl-ex] (2022) $\Lambda p: J.$ W. Price et al., AIP Conf. Proc. 2130, 020004 (2019) $\Lambda p: K.$ Miwa et al., Proposal to J-PARC, P86 (2021)

Hypernuclei \rightarrow YN/YY interactions

6 /23

Hypernuclear spectroscopy has been playing the most important role for the YN/YY-interaction study

Hyperons in the nature

Hypernuclear research

• Internal structure

Microscopic

- Cosmological observation
- Gravitational wave measurement

7 /23

• Mass, radius etc.

Macroscopic

Hyperon puzzle for neutron stars

H. Togashi et al., Phys. Rev. C 93, 035808 (2016)

Multi-body force plays an important role → JLab E12-15-008, E12-20-013

8 /23

Typical production reaction

Implementation of "strangeness" in baryon

Pair creation of "strangeness" and "unti-strangeness"

9 /23

Hypernuclear production by electrons

10/23

Next experiment at JLab Hall C (FY2026~)

Steven Lassiter & Bert Metzger, JLab Hypernuclear Collaboration Meeting 2022, online, Dec 2022, https://wiki.jlab.org/tegwiki/index.php/Hypernuclear_CollaborationMeeting_2022Dec

12/23

Schematic from LOI12-23-013 (TG et al., LoI to PAC51): https://researchmap.jp/gogami/published_papers/42361 620/attachment_file.pdf

T. Motoba, <u>JPS Conf. Proc. 17, 011003</u> (2017)

14/23

15/23

15/23

15/23

Charge Symmetry Breaking (CSB), the mystery

*1) J.H.E.Mattauch et al., Nucl. Pys. 67, 1 (1965).

*2) R.A.Brandenburg, S.A.Coon *et al.*, *NPA***294**, 305 (1978).

T. Gogami (Kyoto U.), June 28, 2023

Figure from proposal of <u>JLab E12-19-002</u>

16/23

Data of other systems are necessary to pin down the origin of CSB

Japan Proton Accelerator Research Complex (J-PARC), Ibaraki, Japan

17/23

REAL STATE

The first commissioning data were taken last week!!

Nov 9, 2022 @K1.8 beam line, J-PARC, Japan

as well

T. Gogami et al., <u>EPJ Web</u> <u>Conf. 271, 11002 (2022)</u>.

	Electron-beam experiment at JLab E Emulsion experiment							eriment			
	Hadron-beam experiment at J-PARC γ -ray experiment								ent		
Hypernucleus							CSB study				
rigpennucieus			T<0		T=0		T>0		Now JLab J-PA		J-PARC
s-shell	000	(0^+)	$^{4}_{\Lambda}H_{n}$	VPHY H			⁴ _A He	VP H	0	0	0
		(1^{+})						VPH	\triangle	igodol	igodol
p-shell			$^{6}_{\Lambda}$ He	new H Y			⁶ _A Li	new H			\bigcirc
			⁷ _A He	H Y	$^{7}_{\Lambda}$ Li*	VP	$^{7}_{\Lambda}\mathrm{Be}$	VP Y	0	0	Ο
			⁸ _A Li	VP Y H			$^{8}_{\Lambda}\mathrm{Be}$	VPFY	0	0	0
			$^{9}_{\Lambda}$ Li "	WPE Y	⁹ βBe	VP F H	${}^9_{\Lambda}\mathbf{B}$	VP F H		\bigcirc	igodol
			$^{10}_{\Lambda}\mathrm{Be}$	F H			$^{10}_{\Lambda}{ m B}$	New H			\bigcirc
			$^{11}_{\Lambda}\mathrm{Be}$	mew H	$^{11}_{\Lambda}\mathbf{B}$	new H	$^{11}_{\Lambda}\mathrm{C}$	VP E H		\bigcirc	\bigcirc
			$^{12}_{\Lambda}\mathbf{B}$	€ ► H			$^{12}_{\Lambda}\mathrm{C}$	New H			\bigcirc

20/23 Isospin multiplet for CSB study

01 "complete"

21/23 High resolution spectroscopy at J-PARC and JLab

0.6 MeV (FWHM)

1 MeV (FWHM)

Summary

Λ hypernuclear spectroscopy

♦ Baryon interaction (YN, YNN)

JLab Hypernuclear Collaboration

- ♦ (e,e'K⁺) reaction \rightarrow High resolution/accuracy spectroscopy
- $\diamond~$ The method was established at JLab
- ♦ Future experiment $({}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H, {}^{6}_{\Lambda}He, {}^{11}_{\Lambda}Be, {}^{27}_{\Lambda}Mg, {}^{40}_{\Lambda}K, {}^{48}_{\Lambda}K, {}^{208}_{\Lambda}Tl)$
 - hypertriton puzzle (biding energy vs. lifetime)

 - Deformation
 - $\Lambda N-\Sigma N$ coupling
 - \circledast iso-spin dependence of ΛNN force

T. Gogami (Kyoto U.), June 28, 2023

Mar 3, 2023 Hypernuclear Physics Workshop: https://indico.jlab.org/event/685/

Thank you for your attention!

Backup

Text book like example; shell structure

Japan Proton Accelerator Research Complex (J-PARC), Ibaraki, Japan

• 400 MeV LINAC

/23

- 3 GeV RCS
- 30 (→50) GeV MR

Strangeness –2 Spectrometer (S-2S) at K1.8

Strangeness –2 Spectrometer (S-2S) at K1.8

Direct measurement of energy loss in target

→ But, high resolution!!

T. Gogami (Kyoto U.), June 28, 2023

T. K. Harada, EPJ Web Conf. 271 (2022) 03006

~900-ch of scintillation fibers (CH)

Direct measurement of energy loss in target

T. K. Harada, EPJ Web Conf. 271 (2022) 03006

(Feb 16, 2023) T. Gogami (Kyoto U.), June 28, 2023

Energy spectrum with the (K^{-}, K^{+}) reaction

T. Harada, Y. Hirabayashi, A. Umeya, NPA 914, 85–90 (2013)

/23

ΛΛ hypernuclei may be observed

Hypernuclear chart (S = -2 floor)

/23

- K. Nakazawa et al., PTEP 2015, 033D02 (2015)
- M. Yoshimoto et al., PTEP 2021, 073D02 (2021)
- S. Hayakawa et al., PRL 126, 062501 (2021)

Hypernuclear chart (S = -2 floor)

/23

J-PARC E94

Schedule of the next experiments

Short summary

JLab (HES-HKS, 0.6 MeV FWHM, 70 keV accuracy, 2026)

- $(e, e'K^+)$ reaction at $\omega = 1.5 \text{ GeV}$
- ♦ Approved: ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$, ${}^{208}_{\Lambda}Tl$
- ♦ New additional plans: ${}^{6}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ Be, ${}^{27}_{\Lambda}$ Mg

<u>J-PARC</u> (S-2S, 1.0 MeV FWHM, 100 keV accuracy, 2023–25)

- (π^+, K^+) and (K^-, K^+) reactions at p = 1.05 and $1.8 \, \text{GeV}/c$
- ♦ Approved: ${}^{6}_{\Lambda}$ Li, ${}^{10}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{7}_{\Xi}$ H, ${}^{12}_{\Xi}$ Be
- ♦ New additional plan: $^{6}_{\Lambda}$ Li, $^{11}_{\Lambda}$ B

Some References

J-PARC

- Resent results : <u>https://j-parc.jp/c/press-release/2022/09/05001005.html</u>
- Future projects : <u>https://doi.org/10.1051/epjconf/202227111002</u>

<u>JLab</u>

- > Resent results (nn A search experiment) :
 - <u>https://doi.org/10.1051/epjconf/202227102002</u>
 - https://www.kyoto-u.ac.jp/ja/research-news/2022-03-08
- Future projects : <u>https://doi.org/10.1051/epjconf/202227101001</u>

Physics on a dish of S-2S

Strangeness S = -2 nuclear physics

Hypernuclei ∧, **Ξ**, ∧ ∧ (E70, E75, E94, E96)

Missing mass
Decay pion
Gamma / X rays

/23

Mesic nuclei η'

Ξ* spectroscopy

 $\Sigma N cusp (E90)$

etc.

TG et al., EPJ Web Conf. 271, 11002 (2022)

Femtoscopy for p-E⁻ by ALICE at LHC

$$C_{\text{model}}(k^{*}) = 1 + \lambda_{\text{genuine}}[C_{\text{genuine}}(k^{*}) - 1] + \sum_{ij} \lambda_{ij}[C_{ij}(k^{*}) - 1],$$

$$+ \sum_{ij} \lambda_{ij}[C_{ij}(k^{*}) - 1],$$

$$p - \Xi \oplus \overline{p} - \Xi^{+}$$

$$p - \Xi \oplus \overline{p} - \Xi^{+}$$

$$Coulomb + HAL-QCD$$

$$p - \Xi \oplus \overline{p} - \Xi^{+}$$

$$p - \Xi^{-} \text{ sideband background}$$

S. Acharya et al., Phys. Rev. Lett. 123, 112002 (2019)

k* (MeV/c)

Complication of structures

T. Motoba and S. Sugimoto, NPA 835 (2010) 223-230

$$m_{H} = \sqrt{E_{H}^{2} - \overline{p_{H}}^{2}} = \sqrt{(E_{\text{beam}} + M_{t} - E_{s})^{2} - (\overline{p_{B}} - \overline{p_{s}})^{2}}$$
$$\Rightarrow B_{\Xi} = (m_{core} + m_{\Xi}) - m_{H}$$
T. Gogami (Kyoto U.), June 28, 2023

${}^{12}C(K^-, K^+){}^{12}_{\Xi}Be \leftarrow Missing-mass measurement$

\rightarrow 2 MeV in J-PARC E70

T. Gogami (Kyoto U.), June 28, 2023

P. Khaustov et al., PRC 61 (2000) 054603

/23

 \implies V_{0E} $\leq 14 \text{ MeV}$

c.f.)

M. Kohno et al., PTP123, 1 (2010) M. Kohno, PRC 100, 024313 (2019)

For high resolution spectroscopy \rightarrow S-2S

Aerogel Cherenkov

Drift chamber T. Goganni (Kyoto U.), June 20, 2023

Detector frame

/23

J-PARC E05 experiment at K1.8 beam line

TG et al., J. Phys.: Conf. Ser. 1643 (2020) 012133

Analysis by Y. Ichikawa

T. Gogami (Kyoto U.), June 28, 2023

E70, T. Gogami (Kyoto Univ.)

/23

Ξ (S = -2 baryon) in neutron stars

 $\frac{\text{Tolman-Oppenheimer-Volkoff eqs.}}{p = p(\epsilon) \leftarrow \text{EOS}}$ $\frac{dm}{dr} = 4\pi r^2 \epsilon(r)$ $\frac{dp}{dr} = -[p(r) + \epsilon(r)] \times \frac{m(r) + 4\pi r^3 p(r)}{r[r-2m(r)]}$

 V_{Ξ} is one of ingredients to tackle the hyperon puzzle of NS

T. Gogami (Kyoto U.), June 28, 2023

RMF model

B. K. Pradhan and D. Chatterjee, PRC 103, 035810 (2021)

Assumption for $^{12}_{\Lambda}$ C production

$\frac{12}{C}(\pi^{+},K^{+})^{12}AC @ p_{\pi} = 1.64 \text{ GeV}/c$

- \Rightarrow Total efficiency = 0.5
- & K survival ratio = 0.46
- $Cross section = 1 \ \mu b/sr$
- \Leftrightarrow Solid angle = 55 msr
- \Rightarrow Target thickness = 2 g/cm²
- \Rightarrow Beam = 3 M pion per spill (spill cycle of 4.2 sec)
- \diamond 5 days
- \diamond S-2S momentum setting is the same as that for the Ξ production

Expected spectrum for the ${}^{12}_{\Xi}$ Be production

$$^{12}C(K^-,K^+)^{12}_{\Xi}Be (a) p_{\pi} = 1.8 \text{ GeV}/c$$

 \diamond Total efficiency = 0.5

& K survival ratio = 0.46 (8 m optical length)

 \Leftrightarrow Solid angle = 60 msr

- Cross section = 60 nb/sr (0-10 deg)
- \Rightarrow Target thickness = 9 g/cm² (AFT made of CH)
- ♦ Beam = 0.8 M kaon per spill (spill cycle of 4.2 sec)
 ♦ 20 days

/23

Theory (Interaction) LQCD etc.

M.M. Nagels, Th. A. Rijken, Y. Yamamoto, PRC 102, 054003 (2020)

	ESC16	A1	A2	B1	B2	HAL-QCD
X_2	0.0	2.85	2.55	1.65	1.07	
X_3	0.0	0.0	1.6	0.0	3.0	
X_s	0.0	0.0	0.0	10.	10.	
$^{11}S_0$	2.1	1.4	1.4	-4.0	-4.0	-4.9
$^{13}S_1$	-0.4	-2.2	-2.2	-2.8	-2.8	-2.2
${}^{11}P_1$	-0.2	-0.3	-0.3	-0.3	-0.3	
$^{13}P_{0}$	-5.3	-3.5	-3.5	-2.0	-2.0	
$^{13}P_{1}$	1.5	1.3	1.3	1.7	1.7	
$^{13}P_{2}$	-1.2	-1.2	-1.2	-2.3	-2.3	
$^{31}S_0$	9.2	9.9	9.9	6.8	6.8	1.8
${}^{33}S_1$	7.6	-13.5	-13.9	-4.7	-4.9	-5.4
${}^{31}P_1$	1.0	1.3	1.3	1.0	1.0	
$^{33}P_0$	0.8	1.0	1.0	0.8	0.7	
${}^{33}P_1$	-2.0	-2.8	-2.8	-3.0	-3.0	
$^{33}P_{2}$	0.5	0.1	0.1	-1.0	-1.0	
U_{Ξ}	+13.7	-8.5	-9.0	-10.1	-10.4	-10.6
Γ^c_{Ξ}	5.1	5.7	5.7	0.5	0.5	0.2

K. Sasaki et al., NPA 998, 121737 (2020) **T. Gogami (Kyoto U.), June 28, 2023**

Calc.	¹² C + Ξ ⁻	$^{14}N + \Xi^{-}$	$^{27}Al + \Xi^{-}$				
	$B_{\Xi} (\Gamma) [/MeV]$						
ESC16 (A1)	4.8 (2.8)	5.1 (3.3)	9.0 (2.9)				
ESC16 (B1)	4.9 (0.2)	5.2 (0.24)	9.2 (0.22)				
HAL-QCD	4.4 (0.13)	5.5 (0.16)	9.6 (0.12)				

→ The width is important to be measured as well as the energy

X-ray spectroscopy of Ξ^- -atom

Proton number

C (Z=6)-atom: J-PARC E07 (-2017) & Together with S-2S (2023-) (also N-atom, O-atom...) Fe (Z=26)-atom : J-PARC E03 (-2021) Br (Z=35)-atom : J-PARC E07 (-2017) Ag (Z=47)-atom : J-PARC E07 (-2017) Pb (Z=82)-atom : PANDA (2027+)

The lightest E hypernuclei

E. Hiyama et al., PRL 124, 092501 (2020)

	Hypernuclei	chEFT (NLO)	HAL QCD	ESC08c			
		$B_{\Xi}(\Gamma) [/MeV]$					
	${}^{4}_{\Xi}H(1^{+})$	0.48 (0.74)	0.36 (0.03—0.06)	10.2 (0.89)			
	$\frac{4}{\Xi}n(1^+)$	0.64 (0.11)	Not bound 😥	10.1 (0.03)			

H. Le, J. Haidenbauer, Ulf-G. Meiβner, A. Nogga, Eur. Phys. J. A (2021) 57:339

T. Gogami (Kyoto U.), June 28, 2023

S-2S

$^{5}_{\Lambda\Lambda}$ H measurement (E75)

Refer to a talk by H. Fujioka in <u>J-PARC PAC33</u>

Reaction cross section of ⁷Li(K^-, K^+)⁷_ΞH (w/o solenoid magnet)

T. Gogami (Kyoto U.), June 28, 2023

23

