CREX Experimental Results

2023 JLab User Group Annual Meeting

ericking@temple.edu

Experimental Motivation

In general, we'd like to have a much better understanding of the overall nuclear landscape.

- Ab-initio methods are easily performed for light nuclei
- DFTs are used for medium-weight and heavy-weight nuclei.
- ⁴⁸Ca lies on the light-to-medium weight nuclei boundary.

Experimental Motivation

- ⁴⁸Ca provides a unique opportunity to examine the light-nuclei to medium/heavy-nuclei transitional region to compare to theory.
 - Made it an ideal sister-experiment to PREX-2
- Like ²⁰⁸Pb, ⁴⁸Ca is doubly-magic meaning that there is no spin-spin correction for the Mott cross-section, simplifying the experiment.

Typical Electron-Nucleon Scattering Experiments

$$F(Q^2) = \int e^{-iq \cdot r} \rho(r) d^3 r$$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega \,\mathrm{Mott}} |F(Q^2)|^2$$

← Form factors contain information about the charge distribution. They arise from the scattering potential.

← Act as a modification of the cross section. off a point-like scattering target.

Cross sections are related to form factors and the valuable physics can be extracted. In this case, charge radii of various nuclei.

EW Implications: Particle Charges

Electromagnetic and Weak Charges of Particles

Particle	Q _e	Q _w
Proton	+1	~0.07
Neutron	0	~1
Electron	-1	$-(1-4\sin^2 heta_{\mathbf{W}})$

Note: Conventionally, this matter is discussed with weak charge; however, the basis for the parity violation is the weak-isospin T_2 which =0 for all right-handed spin states

- Image source: QWeak Collaboration è
- 1. Electromagnetic scattering from nucleus only happens with protons.
- 2. Weak scattering primarily occurs from neutrons and violates parity.

\Rightarrow With the right type of experiment and facility one can take advantage of this phenomenon.

JLab Polarized Source

- Circularly polarized laser incident on superlattice GaAs photocathode.
- Finely tuned and rapidly alternated through use of a RTP Pockel
- Produces bunches of polarized (~90%) electrons.
- Slow noise controlled by alternating usage of insertable halfwave plate.
- Wein flips used for additional control

Parity-violating Asymmetry A_{py}

- Electroweak cross section
 - \circ $\;$ Account for Gamma and $\rm Z_{o}$
- Interference term responsible for parity-violating asymmetry
- $[1 4 \sin^2 \theta_W] \approx 0 \implies \sin^2 \theta_W \sim 0.23 \text{ xx}$

$$\sigma \propto |M_{\gamma} + M_{W}|^{2} = |M_{\gamma}|^{2} + 2M_{\gamma}M_{W}^{*} + |M_{W}|^{2}$$

$$M_{W,L} = -M_{W,R}$$

$$M_{W,L} = -M_{W,R}$$

$$M_{W,L} = -M_{W,R}$$

$$Note:$$

•
$$F_{CH}(q) \Rightarrow \text{Experimentally}$$

well-known values $A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \left[1 - 4\sin^2\theta_W - \frac{F_W(Q^2)}{F_{CH}(Q^2)} \right] \approx 10^{-6}$

• Measuring the parity-violating asymmetry provides us with a clean way of measuring $F_w(q)$

$$\frac{-\sigma_L}{+\sigma_L} \approx \frac{G_F Q^{-} |Q_W|}{4\sqrt{2}\pi\alpha Z} \left[1 - 4\sin^2\theta_W - \frac{F_W(Q^{-})}{F_{CH}(Q^2)} \right] \approx 10^{-6}$$
$$A_{PV} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2}\pi\alpha Z} \frac{F_W(Q^2)}{F_{CH}(Q^2)} \approx 10^{-6}$$

Eric King – JLab Users Group Meeting, June 2023

- HRS Double Arm Spectrometer
- Capable of precision energy measurement with its native vertical drift chambers

Target

Chamber

- Captured very small cross section
- QQDQ Optics Setup

- QQDQ Optics Setup
- Optics finely-tuned to separate inelastic scatters out of the detector acceptance.
- Primary collimation immediately after the target scattering defines experimental acceptance.

Target

Chamber

Septum magnets bend target scatters from 5° to 12.5° (HRS minimum angle).

<u>Quartz Detectors</u>

- Integrating Detectors
- Capable of handling GHz rates
 - CREX
 - ~ 50MHz
 - PREX-2 > 2GHz
- Made of 5mm thick radiation hard silica.
- Each quartz detector connected to PMT

GEM Detectors

- Gaseous Electron Multiplier
- Counting Detector
 - Can identify single MIPs
 - Multiple GEMs can offer effective track reconstruction

• Used for kinematics measurements and elastic signal alignment.

Started with:

11

PREX2/CREX Target Ladder

> Enriched 48Ca target

Started with:

PREX2/CREX Target Ladder

Ended with:

Replacement target

12

Eric King – JLab Users Group Meeting, June 2023

Enriched 48Ca target

Beam struck target ladder and destroyed first target

Beam Corrections & Scattering Angle/Water Cell

Beam corrected for position fluctuations, charge asymmetry and energy fluctuations (all of which are continually monitored).

Corrections determined through careful analysis of controlled alterations (a.k.a. "beam modulation") and regression techniques on natural beam jitter.

> Recoil momentum difference $\Rightarrow Q^2$

Møller Detector

Ream Dump

Beam Polarimetry | Compton + Moller

- Compton eγ scattering.
- Electron beam diverted from main beam line into chicane and into circularly polarized light amplified in optical cavity.
- Backscattered γ detected by photon detector
- Minimally destructive to beam and can be run concurrent to experiment.
 - <u>Compton Result</u> 87.10% +/- 0.52%

<u>Combined Result</u> 87.09 +/- 0.44%

- Brute force polarimeter.
 - Superconducting magnet holds 4T field to align foil spins in beam direction.
 - ~8% foil polarization
- Looks for Moller coincidence.
- Monte carlo used to determine analyzing power.
- Destructive to beam quality.

Moller Result

87.06 +/- 0.85%

*Beam polarization is the largest systematic uncertainty so it's important to get this precise and correct.

Eric King – JLab Users Group Meeting, June 2023

Asymmetry Extraction

$$A_{phys} = R_{radcorr} R_{accept} R_{Q^2} \frac{A - P_L \sum_i f_i A_i}{P_L \left(1 - \sum_i f_i\right)}$$
$$A_{corr} = A_{det} - A_{beam} - A_{trans} - A_{nonlin} - A_{blind}$$

The final asymmetry is corrected for:

- R_{radcorr}: Radiative Corrections
- R_{accept}: Acceptance
- R_Q^2 : Scaling for Q^2
- P_{L} : Beam Polarization
- $P_L \Sigma_i f_i A_i$: Backgrounds
- A_{corr}: Corrected Asymmetry
- A_{beam}: Beam Corrections
- A_{trans}: Transverse asymmetry correction
- A_{nonlin}: Detector non-linearities
- A_{blind}: Experimental blinding

- Dominated by statistical uncertainty 4%
- Beam polarization uncertainty is the largest contributor.
- Beam trajectory/energy uncertainty reasonably well-controlled during experiment
 - Regression/Beam Mod
 - Charge Feedback
- Transverse asymmetry comes from separate measurements.
- Acceptance function uncertainty derived from Monte Carlo

*Table taken from CREX paper.

Correction	Absolute (ppb)	Relative (%)	
Beam polarization	382 ± 13	14.3 ± 0.5	
Beam trajectory and energy	68 ± 7	2.5 ± 0.3	
Beam charge asymmetry	112 ± 1	4.2 ± 0.0	
Isotopic purity	19 ± 3	0.7 ± 0.1	
3.831 MeV (2 ⁺) inelastic	-35 ± 19	-1.3 ± 0.7	
4.507 MeV (3 ⁻) inelastic	0 ± 10	0 ± 0.4	
5.370 MeV (3 ⁻) inelastic	-2 ± 4	-0.1 ± 0.1	
Transverse asymmetry	0 ± 13	0 ± 0.5	
Detector nonlinearity	0 ± 7	0 ± 0.3	
Acceptance	0 ± 24	0 ± 0.9	
Radiative corrections (Q_W)	0 ± 10	0 ± 0.4	
Total systematic uncertainty	40 ppb	1.5%	
Statistical uncertainty	106 ppb	4.0%	

17

Results: Difference of Form Factors (Main Result)

After the extraction of F_{W} from A_{PV}

Difference of the charge form factor and weak form factors

- Form factors do vary as a function as a function of Q²
- F_{ch} is an experimentally well-vetted quantity
- Statistical error shown in black and total experimental error shown in red.

Results: Weak Skin and Neutron Skin

Difference of the charge and weak form factors of ⁴⁸Ca plotted against R_W-R_{ch} and the ⁴⁸Ca neutron skin R_{np}

- Extraction of R_w-R_{CH} from F_{CH}-F_w does introduce some model dependence due to Q²-dependence
- Extraction of R_{np} introduces some additional model differences in relativistic vs. non-relativistic models due to spin orbit $\vec{L} \cdot \vec{S}$ dependencies.

Relativistic density functional models shown in **magenta diamonds** while non-relativistic are shown in **gray circles**.

19

Results: CREX & PREX2 Neutron Skin

CREX results and PREX-2 neutron skin results plotted against

- The results are consistent at the 90% level with several DFT models.
- The combined CREX/PREX2 results are consistent with the coupled cluster mode.

Conclusions

- 48Ca has a thinner neutron skin than predicted by models.
 - As a reminder, PREX2 revealed results that correlate to a thicker than expected neutron skin.
- Combined with the PREX2 measurements the precision CREX result provides additional and valuable information for predicting neutron skin of nuclei.
 - Helps bridge the divide between ab-initio calculations and DFT predictions in the light- to medium-weight nuclei.

21

Acknowledgements / Questions / Comments

The CREX Collaboration

PHYSICAL REVIEW LETTERS 129, 042501 (2022)

Editors' Suggestion

Precision Determination of the Neutral Weak Form Factor of ⁴⁸Ca

D. Adhikari⁰,¹ H. Albataineh,² D. Androic⁰,³ K. A. Aniol,⁴ D. S. Armstrong⁶,⁵ T. Averett,⁵ C. Ayerbe Gayoso,⁵ S. K. Barcus,⁶ V. Bellini⁰,⁷ R. S. Berniniwattha⁰,⁸ J. F. Benesch,⁶ H. Bhatt⁰,⁹ D. Bhatta Pathak,⁸ D. Bhetuwal,⁹
B. Blaikie⁰,¹⁰ J. Boyd,¹¹ Q. Campagna⁰,⁵ A. Camsonne,⁶ G. D. Cates⁰,¹¹ Y. Chen,⁸ C. Clarke,¹² J. C. Cornejo,¹³ S. Covrig Dusa,⁶ M. M. Dalton⁰,⁶ P. Datta,¹⁴ A. Deshpande,^{12,15,16} D. Dutta,⁹ C. Feldman,^{12,17} E. Fuchey,¹⁴ C. Gal⁰,^{15,9,11,12}
D. Gaskell⁰,⁶ T. Gautan,¹⁸ M. Gericke,¹⁰ C. Ghosh,^{19,12} I. Halilovic,¹⁰ J.-O. Hansen⁰,⁶ O. Hassan⁰,¹⁰ F. Hauenstein,⁶
W. Henry,²⁰ C. J. Horowitz⁰,²¹ C. Jantzi,¹¹ S. Jian,¹¹ S. Johnston,¹⁹ D. C. Jones⁰,^{20,6} S. Kakkar,¹⁰ S. Katugampola⁰,¹¹
C. Keppel,⁶ P. M. King⁰,²² D. E. King⁰,^{23,20} K. S. Kumar,¹⁹ T. Kutz,¹² N. Lashley-Colthirst,¹⁸ G. Leverick,¹⁰ H. Liu,¹⁹
N. Liyanage,¹¹ J. Mammei,¹⁰ R. Mammei,²⁴ M. McCaughan⁰,⁶ D. McNulty,¹ D. Meekins,⁶ C. Metts,⁵ R. Michaels,⁶
M. Mihovilovic,^{25,26} M. M. Mondal,^{12,15} J. Napolitano,²⁰ A. Narayan,²⁷ D. Nikolaev,²⁰ V. Owen⁰,⁵ C. Palatchie^{11,15}
J. Pan,¹⁰ B. Pandey,¹⁸ S. Park⁰,^{9,12} K. D. Paschk⁰,^{11,4} M. Petrusky,¹² M. L. Pitt,²⁸ S. Premathilake,¹¹ B. Quinn,¹³
R. Radloff,²² S. Rahman,¹⁰ M. N. H. Rashad,¹¹ A. Rathnayake,¹¹ B. T. Reed,²¹ P. E. Reimer,²⁹ R. Richards,¹² S. Riordan,²⁹ Y. R. Roblin,⁶ S. Seeds,¹⁴ A. Shahinyan,³⁰ P. Souder,²³ M. Thiel³¹ Y. Tian,²³ G. M. Urciuoli,³² E. W. Wertz⁵
B. Wojtsekhowski,⁶ B. Yale,⁵ T. Ye,¹² A. Yoon,³³ W. Xiong,^{23,4} A. Zec,¹¹ W. Zhang,¹² J. Zhang⁰,^{12,15,34} and X. Zheng⁰¹¹

Comments.

<u>Participating Institutions</u>

¹Idaho State University, Pocatello, Idaho 83209, USA ²Texas A & M University—Kingsville, Kingsville, Texas 78363, USA ³University of Zagreb, Faculty of Science, Zagreb, HR 10002, Croatia ⁴California State University, Los Angeles, Los Angeles, California 90032, USA ⁵William and Mary, Williamsburg, Virginia 23185, USA ⁶Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ⁷Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95123 Catania, Italy ⁸Louisiana Tech University, Ruston, Louisiana 71272, USA ⁹Mississippi State University, Mississippi State, Mississippi 39762, USA ¹⁰University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada ¹¹University of Virginia, Charlottesville, Virginia 22904, USA ¹²Stony Brook, State University of New York, Stony Brook, New York 11794, USA ¹³Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ¹⁴University of Connecticut, Storrs, Connecticut 06269, USA ¹⁵Center for Frontiers in Nuclear Science, Stony Brook, New York 11794, USA ¹⁶Brookhaven National Laboratory, Upton, New York 11973, USA ¹⁷Institute for Advanced Computational Science, Stony Brook, New York 11794, USA ¹⁸Hampton University, Hampton, Virginia 23668, USA ¹⁹University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA ²⁰Temple University, Philadelphia, Pennsylvania 19122, USA ²¹Indiana University, Bloomington, Indiana 47405, USA ²²Ohio University, Athens, Ohio 45701, USA ²³Syracuse University, Syracuse, New York 13244, USA ²⁴University of Winnipeg, Winnipeg, Manitoba R3B2E9, Canada ²⁵ Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia ²⁶Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia ²⁷Veer Kunwar Singh University, Ara, Bihar 802301, India ²⁸Virginia Tech, Blacksburg, Virginia 24061, USA ²⁹Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA ³⁰A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036, Armenia ³¹Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55122, Germany ³²INFN - Sezione di Roma, I-00185 Rome, Italy ³³Christopher Newport University, Newport News, Virginia 23606, USA ³⁴Shandong University, Qingdao, Shandong 266237, China

Publications

Precision Determination of the Weak Form Factor of ⁴⁸Ca https://doi.org/10.1103/PhysRevLett.129.042501_arXiv:2205.11593v2

An overview of how parity-violating electron scattering experiments are performed at CEBAF <u>https://doi.org/10.1016/j.nima.2022.167710</u> (open access)

An Accurate Determination of the Neutron Skin Thickness of ²⁰⁸Pb Through Parity-Violation in Electron Scattering <u>http://dx.doi.org/10.1103/PhysRevLett.126.172502</u> arXiv:2102.10767

New Measurements of the Beam-normal Single Spin Asymmetry in Elastic Electron Scattering over a Range of Spin-o Nuclei https://doi.org/10.1103/PhysRevLett.128.142501 arXiv:2111.04250

Precision Møller polarimetry for PREX-2 and CREX https://doi.org/10.1016/j.nima.2022.167506 arXiv:2207.02150

Accurate Determination of the Electron Spin Polarization in Magnetized Iron and Nickel Foils for Møller Polarimetry https://doi.org/10.1016/j.nima.2022.167444_arXiv:2203.11238

<u>PhD Theses</u>: Devi Adhikari, Cameron Clarke, Tao Ye, Sakib Rahman, Ryan Richards, Robert Radloff, Eric King, Weibin Zhang, Siyu Jian, Amali Premathilake, Allison Zec

Someone may ask

• Move to backup slide just for reference.

Extracted (and Used) Physics Values

10000 , $d = \sqrt{6}$					
Quantity	Value	(stat)	(sys)		
A _{PV}	2668 ppb	106			
<q<sup>2></q<sup>	0.0297 GeV ² /c ²				
q	0.8733 fm ⁻¹				
F _w (q) / F _{CH} (q)	0.8428	0.0328	0.0124		
F _{CH} (q)	0.1581				
F _w (q)	0.1304	0.0052	0.0020		
F _{CH} (q) - F _W (q)	0.0277	0.0052	0.0020		
R _w -R _{CH}	0.159	0.026	0.023		
R _n -R _p	0.121	0.026	0.024		

Note: $q = \sqrt{Q^2}$

Eric King – JLab Users Group Meeting, June 2023

• Move to backup slide just for reference.

Physics Extraction

After the parity-violating asymmetry is extracted from the data:

- The weak form factor can be extracted.
- From that we can get the weak density and the weak radius.
- Finally the neutron skin can be extracted.

The last equation was Chucks formulation in one of his talks for PREX that I used in my thesis; I honestly don't know if this is the same method used here given that there was apparently more model dependence in the neutron skin extraction.

$$A_{PV} \rightarrow F_W \rightarrow \rho_W \rightarrow R_W \rightarrow R_{np}$$

$$A_{PV} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \frac{F_W(Q^2)}{F_{CH}(Q^2)} \approx 10^{-6}$$

$$F_W(Q^2) = \frac{1}{4\pi Q_W} \int d^3r j_0(Qr) \rho_W(r)$$

$$R_{np} = \left(1 + \frac{ZQ_{W_p}}{NQ_{W_n}}\right) (R_W - R_{ch})$$

Eric King – JLab Users Group Meeting, June 2023

Compton and Møller Measurement Overlay

Møller and Compton measurements <u>were consistent</u> throughout the CREX experiment.

Hall A Collaboration Meeting | Feb 10

Comparison of Compton & Møller Polarization Measurements

Polarization Ratios (Compton / Moller) :: Moller v. Compton (+/- 2 days)

- Møller measurements were compared to Compton measurements taken within roughly ± 48 hours.
- The mean Compton/Møller ratio was 0.9995 ± 0.0008

Ratio consistent with 1 at the $\sim 0.1\%$ level.