Selected topics of the deep exclusive reactions program of CLASI2: highlights and perspectives

Pierre Chatagnon, for the CLAS collaboration 2023 JLUO annual meeting 27th of June 2023

The Generalized Parton Distributions...

...and their properties

Some properties of GPDs

- 8 GPDs for spin $\frac{1}{2}$ particles at leading twist:
 - 4 chiral-even GPDs: *H*, *E*, *H*, *E*
 - 4 chiral-odd GPDs: H_{T} , E_{T} , \tilde{H}_{T} , \tilde{E}_{T}
- They depends on three variables:
 - x, the average momentum of the struck quark,
 - ξ , the transferred longitudinal momentum fraction,
 - the Mandelstam variable t.

What can we learn from the GPDs?

• Tomography of the nucleon: the Fourier transform of the GPDs can be interpreted as a probability density:

$$H^q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp}\Delta_{\perp}} H^q(x,0,-\Delta_{\perp}^2)$$

• Understanding the spin composition of the nucleon (aka the "spin puzzle") using the Ji's sum rule:

$$\frac{1}{2} = J_Q + J_G \qquad \longrightarrow \qquad J_Q = \sum_q \frac{1}{2} \int_{-1}^1 dx \ x \left(H^q(x,\xi,0) + E^q(x,\xi,0) \right) = \sum_q \frac{1}{2} (A^q(t) + B^q(t)) =$$

• Accessing Gravitational Form Factors by mimicking a spin-2 interaction:

$$\int_{-1}^{1} dx \ x H^{q}(x,\xi,t) = \frac{A^{q}(t)}{A^{q}(t)} + \xi^{2} D^{q}(t)$$

Compton Form Factors

 $\int_{-1}^{1} dx \ x E^{q}(x,\xi,t) = \frac{B^{q}(t)}{B^{q}(t)} - \xi^{2} D^{q}(t)$

• GPDs are usually not accessible directly, but through complex quantities, the Compton Form Factors:

$$\mathcal{H} = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right)$$

Jefferson

The CLASI2 detector

Forward Detector

- Forward Time-of-Flight
- Cherenkov counters

Deep exclusive reactions program of CLASI2

Reaction	Observable	Experimental configuration	Lead analyzer (Affiliation)	Status
DVCS on proton	BSA	RG-A (Proton target)	G.Christiaens/M. Defurne (CEA Saclay)	Published (PRL)
DVCS on proton	Cross-section	RG-A	S. Lee (ANL)	Internal review
DVCS on bound neutron	BSA	RG-B (Deuterium target)	A. Hobart/S. Niccolai (IJCLab Orsay)	Internal review
DVCS on bound proton	BSA	RG-B	A. Hobart/S. Niccolai (IJCLab Orsay)	Internal review
Coherent DVCS on deuterium	BSA	RG-B	A. Biselli (Fairfield U.)	Ongoing
DVCS on proton	BSA	RG-K (Proton target, 6.5 and 7.5 GeV beam)	J.A. Tan (Kyungpook National U.)	Ongoing
DVCS on proton	BSA/TSA/DSA	RG-C (Longitudinally polarized target)	S. Polcher (CEA Saclay)	Ongoing
DVCS on neutron	BSA/TSA/DSA	RG-C	N. Pilleux (IJCLab Orsay)	Ongoing
Tagged DVCS on neutron	BSA	RG-F (BONuSI2)	M. Ouillon (IJCLab) / M.Hattawy (ODU)	Ongoing
TCS on proton	BSA/AFB	RG-A	P. Chatagnon (JLab)	Published (PRL)
TCS on proton	BSA/TSA/DSA	RG-C	K. Gates (Glasgow)	Ongoing
DVMP π ⁰	BSA	RG-A	A. Kim (UConn)	To be submitted to PLB
DVMP π ⁰	Cross-section	RG-A	R. Johnston (MIT)	Ongoing
DVMP π ⁺	BSA	RG-A	S. Diehl (Giessen/UConn)	Published (PLB)
DVMP ρ	BSA	RG-A	N. Trotta (UConn)	Ongoing
DVMP ¢	Cross-section	RG-A	P. Moran (MIT)	Ongoing
DVMP ϕ	BSA	RG-B	N. Ram (CEA Saclay)	Ongoing
DVMP π^{-} on Δ^{++}	BSA	RG-A	S. Diehl (Giessen/UConn)	Just accepted in PRL
J/ ψ photoproduction on proton	Cross-section	RG-A	P. Chatagnon (JLab)	Ongoing
J/ψ photoproduction on neutron	Cross-section	RG-A	R. Tyson (Glasgow)	Ongoing
Tagged J/ ψ photoproduction on proton	Cross-section	RG-A	M. Tenorio Pita (ODU)	Ongoing

Deep exclusive reactions program of CLASI2

Reaction		Observable	Experimental configuration	Lead analyzer (Affiliation)	Status		
DVCS on proton		BSA	RG-A (Proton target)	G.Christiaens/M. Defurne (CEA Saclay)	Published (PRL)		
DVCS on proton		Cross-section	RG-A	S. Lee (ANL)	Internal review		
DVCS on bound neutron		BSA	RG-B (Deuterium target)	A. Hobart/S. Niccolai (IJCLab Orsay)	Internal review		
DVCS on bound proton			RG-B		Internal review		
Coherent DVCS on deuterium			Disclaime	(Fairfield U.)	Ongoing		
DVCS on proton			RG-K (Proton target, 6.5 and 7.5 GeV beam)	J.A. Tan (Kyungpook National U.)	Ongoing		
DVCS on proton	1) I did my best to mention all analysis and involved analyzers. I might						
DVCS on neutron		BSA/TSA	RG-C	N. Pilleux (IJCLab Orsay)	Ongoing		
Tagged DVCS on neutron	nave miss	ea some.			Ongoing		
TCS on proton	2) Each of these analysis is worth a 20-minutes presentation (at least).						
TCS on proton		Ongoing					
DVMP π ⁰		To be submitte <mark>d to PLB</mark>					
DVMP π ⁰					Ongoing		
DVMP π ⁺		BSA	RG-A	S. Diehl (Giessen/UConn)	Published (PLB)		
DVMP ρ		BSA	RG-A	N. Trotta (UConn)	Ongoing		
DVMP ϕ		Cross-section	RG-A	P. Moran (MIT)	Ongoing		
DVMP ϕ		BSA	RG-B	N. Ram (CEA Saclay)	Ongoing		
DVMP $\pi^{\text{-}}$ on $\Delta^{\text{++}}$		BSA	RG-A	S. Diehl (Giessen/UConn)	Just accepted in PRL		
J/ψ photoproduction on proton		Cross-section	RG-A	P. Chatagnon (JLab)	Ongoing		
$J\!/\psi$ photoproduction on neutron		Cross-section	RG-A	R. Tyson (Glasgow)	Ongoing		
Tagged J/ ψ photoproduction on p	proton	Cross-section	RG-A	M. Tenorio Pita (ODU)	Ongoing		

Outline

Deeply Virtual Compton Scattering measurements

Timelike Compton Scattering measurements

Deeply Virtual Meson Production measurements

Selected perspectives

First CLASI2 measurement of DVCS beam-spin asymmetries in the extended valence region

Lead analyzers: G.Christiaens/M.Defurne (CEA Saclay)

Deeply Virtual Compton Scattering: the golden process to access GPDs

- Reaction of interest: $ep \rightarrow e'p'\gamma$
- In the factorization regime $-t \ll Q^2$, GPD describe the soft structure of the proton

Published results

• Beam spin asymmetry extracted in wide phase space

$$A_{LU} \propto Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

- 1600 new data points
- Based on 25% of the total beam time allocated to CLASI2 DVCS experiment on unpolarized proton

Figures in First CLAS12 Measurement of Deeply Virtual Compton Scattering Beam-Spin Asymmetries in the Extended Valence Region, G. Christiaens et al. (CLAS Collaboration) Phys. Rev. Lett. 130, 211902

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Measurement of pDVCS cross-section

Lead analyzer: S. Lee (ANL)

Motivations

 Cross section sensitive to both Im(H) and Re(H)

 $\frac{d^4\sigma}{dx_B dQ^2 dt d\phi} \propto \left(|\mathcal{T}^{\mathcal{BH}}|^2 + |\mathcal{T}^{\mathcal{DVCS}}|^2 + \frac{2Re\mathcal{T}^{\mathcal{DVCS}}\mathcal{T}^{\dagger \mathcal{BH}}}{2Re\mathcal{T}^{\mathcal{D}\mathcal{VCS}}\mathcal{T}^{\dagger \mathcal{BH}}} \right)$

- Crucial measurement to completely understand DVCS and GPDs
- Normalization under scrutiny by the collaboration

Measurement of nDVCS beam spin asymmetry

Lead analyzers: A.Hobart/S.Niccolai (IJCLab Orsay)

Preliminary BSA results

- nDVCS BSA is mostly sensitive to the GPD E... $A_{LU} \propto Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$
- ... which is a key ingredient to understand the spin composition of the nucleon

Impact on CFF extraction and flavor decomposition

- Measuring nDVCS and pDVCS allows for a flavor separation of the GPDs $H_u = \frac{9}{15} \left[4H_p - H_n \right] \qquad H_d = \frac{9}{15} \left[4H_n - H_p \right]$
- Impact of the new nDVCS data have been tested on a NN fit to the data

Parallel measurement of bound proton DVCS Internal review

Jefferson Lab

Proton and neutron DVCS BSA and TSA on a longitudinally polarized target

Lead analyzers: N. Pilleux (IJCLab) / S.Polcher (CEA Saclay)

Longitudinally polarized target for CLASI2 (RG-C)

- Target cell under 5T solenoid magnetic field, in a 1K cryostat.
- Samples are polarized using microwaves
- Target samples: NH₃, ND₃, C, CH₂, CD₂
- Data taken from June 2022 to March 2023

Preliminary results for pDVCS

- Based on only ~6% of the total dataset
- With incomplete calibration

Figures from N. Pilleux

Ongoing analysis

E____ [GeV]

Background suppression method using carbon data

Other DVCS measurements: tagged nDVCS, DVCS on deuterium and more

Tagged neutron DVCS with Bonus 12 Lead analyzers: M.Ouillon (IJCLab) / M. Hattaway (ODU) Use the mm dead zone BONuS12 TPC to detect Ground (r=20mm Cathode (r=30mr spectator proton Drift /active 2 topologies are Deuterium@5.6 atm (r=3mm) explored Readout pads (17280) GEM 1 (r=70mm) (proton-tagged (r=80mm) GEM 2 (r=73mm) and fully tagged) • $0.20 < MM_{ep \to e\gamma X} [GeV^2/c^4] < 3.00$ CLAS12 BONuS1: $MM_{ed \rightarrow e\gamma p_a(n)}^2 [GeV^2/c^4]$ Proton-tagged analysis by M.Ouillon **Ongoing analysis**

Coherent DVCS on Deuterium

Lead analyzer: A. Bisseli (Fairfield U.)

- Deuterium is a spin-1 particle, with 9 GPDs
- Pioneering measurement, with low statistics

 $A_{LU} \propto Im \left[\frac{2G_1 \mathcal{H}_1 + (G_1 - 2\tau G_3)(\mathcal{H}_1 - 2\tau \mathcal{H}_3) + \frac{2}{3}\tau G_3 \mathcal{H}_5}{2G_1^2 + (G_1 - 2\tau G_3)^2} \right]$

DVCS on the proton at 6.5 and 7.5 GeV

Lead analyzer: J.A.Tan (Kyungpook National U.)

• Similar phase space as CLAS6 with better precision

 $A_{LU} \propto Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$

٠

Timelike Compton Scattering on the proton

Lead analyzer: P. Chatagnon (JLab)

The Timelike Compton Scattering reaction

• The TCS reaction is the symmetric from the DVCS one.

- Two main motivations for the measurement:
 - Test of the GPD universality, via the BSA measurement

$$A_{\odot U} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \propto \frac{\frac{L_0}{L} \sin \phi \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \operatorname{Im} \mathcal{H}}{d\sigma_{BH}}$$

• Access to Re(H), via the forward/backward asymmetry

$$A_{FB}(\theta_{0},\phi_{0}) = \frac{d\sigma(\theta_{0},\phi_{0}) - d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}{d\sigma(\theta_{0},\phi_{0}) + d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})} \\ \propto \frac{\frac{L_{0}}{L}\cos\phi_{0}\frac{(1+\cos^{2}\theta_{0})}{\sin(\theta_{0})}\text{Re}\mathcal{H}}{d\sigma_{BH}(\theta_{0},\phi_{0}) + d\sigma_{BH}(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$

Analysis strategy

• Use quasi-photoproduction events: $ep \rightarrow (e')p'e^+e^-$

Projections for the full proton target dataset (RG-A)

- Only a fraction of RG-A dataset was used for in the PRL article (1/3)
- New significant improvement on the tracking software have been done since $2020 \rightarrow 50\%$ more efficiency for the 3-particle final state

Results from First Measurement of Timelike Compton Scattering, P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

Published in PRL (2021

13/23

Timelike Compton Scattering on a polarized proton target

Lead analyzer: K. Gates (Glasgow)

Motivations

- TCS spin asymmetries provide a complementary way to access CFFs to DVCS
- RG-C data will allow to access 3 spin-polarization observables of TCS
 - BSA: $A_{\odot U} \propto \mathrm{Im}\mathcal{H}$
 - TSA: $A_{UL} \propto \mathrm{Im} \tilde{\mathcal{H}}$
 - DSA: $A_{LL} \propto \mathrm{Re}\tilde{\mathcal{H}}, \mathrm{Re}\mathcal{H}$
- Model predictions show significant asymmetries:

Very preliminary results

Ongoing analysis

- Use quasi-photoproduction event: $ep \rightarrow (e')p'e^+e^-$
- Only ~6% of the total dataset shown

Beam Spin Asymmetry Measurements of Deeply Virtual π⁰ Production with CLASI2

Lead analyzer: A. Kim (Connecticut)

Results

0.25 م 0.25 م

0.05E

-0.0

To be submitted to PLB

- Multidimensional extraction of the BSA
- Comparison with model predictions (GK and JML) has been performed
- Models seem to underestimate the data

1.2 1.4 1.6 1.8) -t [GeV²]

<Q²>=2.58 GeV², <x₂>=0.29

.65 GeV², <x_>=0.37

Hard exclusive π^{+} electro-production off protons in the GPD regime

Lead analyzer: S. Diehl (Giessen/Connecticut)

Analysis strategy

• Reaction extracted in the ep \rightarrow e $\pi^+(n)$ topology

Published results

- Very first multidimensional measurement of the π^{+} electroproduction BSA
- Comparison with various model predictions (JML and GK)

Figures in A multidimensional study of the structure function ratio σLT/σ0 from hard exclusive π+ electro-production off protons in the GPD regime, S. Diehl et al. (CLAS Collaboration), Phys.Lett.B 839 (2023) 137761

Published in PLB (2023)

π - Δ ++ electroproduction beam-spin asymmetries off the proton

6[°] 0.2

).1 ני ט

-0.1

-0.2

-0.3

-0.4

Figures in arxiv:2303.11762

Lead analyzer: S. Diehl (Giessen/Connecticut)

Transition GPDs

- 16 transition GPDs, generalizing the GPDs to $N \rightarrow \Delta$ processes
- No experimental data

Analysis strategy and results

- $ep \rightarrow e'p \pi^{-}(\pi^{+})$ topology
- Avoid resonance region
- BSA fitted with a $sin(\phi)$ shape

$$BSA = \frac{\sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}}{\sigma_0}\sin\phi}{1+\sqrt{2\epsilon(1+\epsilon)}\frac{\sigma_{LT}}{\sigma_0}\cos\phi + \epsilon\frac{\sigma_{TT}}{\sigma_0}\cos 2\phi}$$

6⁰ 0.2

י.0 בי מ^{רב}

-0.2

-0.3

 $+\pi^{-}\Delta^{+}$

1 1.2 1.4

-t' [GeV²]

bin 1 ($\langle Q^2 \rangle$ = 1.95 GeV², $\langle x_{p} \rangle$ = 0.19)

0

Exploratory measurement which needs a strong theoretical support

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-t' [GeV²]

Jefferson Lab

1.2 1

-t' [GeV²]

0.2 0.4 0.6 0.8

17/23

Accepted in PRL last week

0 0.2 0.4 0.6 0.8

$J\!/\psi$ photoproduction near threshold on proton and neutron

Lead analyzers: P. Chatagnon (JLab) / M. Tenorio Pita (ODU) / R. Tyson (Glasgow)

Motivations

• Probe the gluon content of the proton (under 2-gluon exchange assumption and no open-charm)

- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon
- Model-dependent limit on the branching ratio of the Pc pentaquark

Quasi-photoproduction events ($ep \rightarrow (e')p'e^+e^-$ or $ep \rightarrow (e')p'\mu^+\mu^-$)

Tagged-photoproduction ($ep \rightarrow e'(p')e^+e^-$)

- Scattered electron detected in the Forward tagger
- Other topologies and muon final state to be tested

Ongoing analysis

φ DVMP

Other DVMP measurements

ρ **DVMP** on proton

Lead analyzer: N. Trotta (Connecticut)

- Reaction reconstructed in the $ep \rightarrow e' \pi^+ \pi^-(p)$ channel
- Preliminary BSA is extracted

Lead analyzers: P. Moran (MIT) / N. Ram (CEA Saclay) Cross-section extraction on proton target data (FD), I.M K *K vs I.M. PrK , Pass All Cuts 90 K+K- Invariant Mas 10.000 0.0000 1915.1169 10.0000-0 90078-10.8 10.000-0 2.004-0-05 2.8.076-07 0.040-10.000 0.000-0.000 (GeV) 2753 signal ¥ events ¥ 1.6 Σ 1.4 1.2 Signal band 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Hyperon resonances I.M. PrK⁻(GeV) Figures by P. Moran BSA measurement on neutron invariant mass of ϕ with IvI0 cuts invariant mass of e with lvl1 cuts 04 1.06 invariant mass[GeV] invariant mass[GeV] Figures by N. Ram Ongoing analysis

A mid-term perspective with CLASI2: Luminosity upgrade

- Exclusive reaction have typically a low cross-section
- Each additional detected track/particle comes with a detection efficiency "penalty"
- These measurement require large luminosity, which is mostly limited by DC occupancies in CLASI2

A potential solution

Figures courtesy of R. Paremuzyan

µRwell-based detector in front of DC region 1...

- ... combined with increased efficiency of Al tracking, already in place for the current data-processing
- Goal: doubling the luminosity

A long term perspective: Double DVCS measurement

 $ep \rightarrow e' \mu^+ \mu^- p$

Capturing the complete kinematic dependence of GPDs

A long term perspective: Double DVCS measurement

 $ep \rightarrow e' \mu^+ \mu^- p$

- Two main challenges for DDVCS measurement:
 - I. Low x-section: requires high-luminosity
 - 2. Muon detection needed

A potential solution: µCLASI2

- Luminosity increase by a factor 100
- Shielding to reduce DC occupancy and pion background
- Additional calorimeter for electron ID
- New tracking system around the target

Kinematic reach for DDVCS with µCLASI2

Figures courtesy of Rafayel Paremuzyan

Material from LOI-12-16-004 (Stepanyan, Paremuzyan, Baltzell, De Vita, Ungaro et al.)

Summary and outlook

- CLASI2 is the ideal detector for exclusive reaction measurement with its large acceptance able to detect multi-particle final state
- Multiple dataset with different beam energies and targets allow to explore a large range of reactions and kinematics
- The exclusive reaction program of CLASI2 is vibrant:
 - ~I5 ongoing analysis
 - Already some impactful results have been published (DVCS,TCS,Transition GPDs)
 - Some results are well advanced, stay tuned for more results !
- Many very exciting plans to extend this program in the future: HL-CLASI2, µCLASI2, and positron beam (see E.Voutier's presentation on Wednesday)

