Peter Hurck

Strange physics at GlueX

JLUO Annual Meeting 2023

Introduction

- * QCD gives rise to spectrum of hadrons
 - Study quarks as degrees of freedom
 - Many qq̄ and qqq states have been observed
 - * $q\bar{q}q\bar{q}$, $qqqq\bar{q}$, ... are not forbidden!

Evidence exists for pentaquark states:

LHCb, Phys. Rev. Lett. 122, 222001

Hybrid mesons

- main objective for GlueX:
 Search and study of hybrid mesons
- * In quark model: $\vec{J} = \vec{L} + \vec{S}, P = (-1)^{L+1}, C = (-1)^{L+S}$

 \rightarrow <u>not</u> allowed: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

* "Exotic" quantum numbers are "smoking gun" for something not being pure $q\bar{q}$

Strange quark

- Considered a light quark
 - * SU(3) flavour symmetry

* Mass approx. 90-95 MeV

*
$$\frac{m_s}{(m_u + m_d)/2} \approx 27.5$$

* $\frac{m_c}{m_s} \approx 12$

A potential bridge to connect QCD with light
 (*u*, *d*) and heavy (*c*, *b*) quarks

GlueX experiment in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

2017-2018 GlueX-I Since 2019 GlueX-II

* Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

DIRC

- Detection of Internally Reflected Cherenkov light
- Installed and commissioned in 2019

DIRC

- Detection of Internally Reflected Cherenkov light
- Installed and commissioned in 2019
- * Aiming to improve pion kaon separation up to 3.5 4.0 GeV
 - Key for strangeness program at GlueX

Strangeonium

- * $s\bar{s}$ state
- * Are there parallels to charmonium $(c\bar{c})$?

- * There are only few accepted strangeonium states: $\phi(1020), \phi(1680), \phi_3(1850), h_1(1415), f'_2(1525)$
- * A few candidates show dominant decays to $\phi\eta$, $\phi\eta'$, $\phi\phi$
 - * Are these tetraquarks $(ss\bar{s}\bar{s})$?

* We need more measurements to establish a proper strangeonium spectrum

Strangeonium spectrum

nonrelativistic linear potential quark model

Qi Li et al 2021 Chinese Phys. C 45 023116

Y(2175) aka $\phi(2170)$

- BaBar (ISR):
 - * Peaking structure at around 2175 MeV in $e^+e^- \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi$
 - * Peaking structure at around 2130 MeV in $e^+e^- \rightarrow \phi \eta$
- * BES III in $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi$:
 - Observed peak at 2170 MeV
- Strangeness rich environment
- Interpretation not clear, masses vary a lot

BaBar: Phys. Rev. D 77, 092002 (2008)

	$\frac{\chi^2}{\text{n.d.f.}} = \frac{184.9}{160-16} = 1.28$	
R with $I = 0$	ϕ'	$\phi^{\prime\prime}$
$\Gamma^R_{ee} \mathcal{B}^R_{KK^*(892)}(\mathrm{eV})$	$367{\pm}47$	-
$\Gamma^R_{ee} \mathcal{B}^R_{\phi\eta}(\mathrm{eV})$	154 ± 32	$1.7{\pm}0.8$
$1 - \mathcal{B}^{R}_{KK^{*}(892)} - \mathcal{B}^{R}_{\phi\eta}$	$0.33{\pm}0.14$	-
$M_R({ m MeV})$	1709 ± 19	2127 ± 24
$\Gamma_R(MeV)$	$325{\pm}68$	$60{\pm}50$

9

 $\gamma p \rightarrow \phi \eta p$

D. Darulis

- * Study $\gamma p \to \phi \eta p$ with $\phi \to K^+ K^-$ and $\eta \to \gamma \gamma$
 - * Vector-pseudoscalar: same spin-structure as $\omega \pi$
 - Make use of well developed formalisms
 - * Access to exotic quantum numbers 0^{--} and 2^{+-}

 $\gamma p \rightarrow \phi \eta p$

D. Darulis

- * Study $\gamma p \rightarrow \phi \eta p$ with $\phi \rightarrow K^+ K^-$ and $\eta \rightarrow \gamma \gamma$
 - * Vector-pseudoscalar: same spin-structure as $\omega \pi$
 - Make use of well developed formalisms
 - * Access to exotic quantum numbers 0^{--} and 2^{+-}

 $\gamma p \rightarrow \phi \eta p$

D. Darulis

* Increase stats with alternative decay channels $\phi \to K_S K_L$ and $\eta \to \pi^+ \pi^- \pi^0$

* (Mass dependent) partial wave analysis needed to identify resonances

Other interesting reactions

- * $\gamma p \rightarrow \phi \eta' p$
 - * η' also has $s\bar{s}$ component
 - Same spins involved
 - Smaller statistics
 - Will come into reach with complete GlueX-II data set

- * $\gamma p \rightarrow \phi \phi p$
 - Potential for tetra quark discovery
 - * Parallels to $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi J/\psi$
 - * More complicated analysis and small statistics \rightarrow challenging

Workshop

- * Use prize money to organise a workshop on strange physics
- Bring theory and experiment together to identify key measurements as well as stumbling blocks
- Tentatively aimed for early 2024
- Possible topics:
 - Strangeonia and excited kaons
 - Hyperon spectroscopy
 - * A(1405)

*

- Analysis techniques
- New experiments

Summary and outlook

- This is an exciting time to study hadrons containing strange quarks
- GlueX is accumulating a world leading data set for photo production
- DIRC is extending our reach to strange sector
 - Study strangeonia and hyperons

GLUE

 In the future KLong in Hall D will provide new opportunities for studying the spectrum of strange mesons and baryons

gluex.org/thanks

Thank You!

